文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于轻量级 YOLOv5 的快速头盔和车牌检测。

Fast Helmet and License Plate Detection Based on Lightweight YOLOv5.

机构信息

State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China.

School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.

出版信息

Sensors (Basel). 2023 Apr 27;23(9):4335. doi: 10.3390/s23094335.


DOI:10.3390/s23094335
PMID:37177535
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10181523/
Abstract

The integrated fast detection technology for electric bikes, riders, helmets, and license plates is of great significance for maintaining traffic safety. YOLOv5 is one of the most advanced single-stage object detection algorithms. However, it is difficult to deploy on embedded systems, such as unmanned aerial vehicles (UAV), with limited memory and computing resources because of high computational load and high memory requirements. In this paper, a lightweight YOLOv5 model (SG-YOLOv5) is proposed for the fast detection of the helmet and license plate of electric bikes, by introducing two mechanisms to improve the original YOLOv5. Firstly, the YOLOv5s backbone network and the Neck part are lightened by combining the two lightweight networks, ShuffleNetv2 and GhostNet, included. Secondly, by adopting an Add-based feature fusion method, the number of parameters and the floating-point operations (FLOPs) are effectively reduced. On this basis, a scene-based non-truth suppression method is proposed to eliminate the interference of pedestrian heads and license plates on parked vehicles, and then the license plates of the riders without helmets can be located through the inclusion relation of the target boxes and can be extracted. To verify the performance of the SG-YOLOv5, the experiments are conducted on a homemade RHNP dataset, which contains four categories: rider, helmet, no-helmet, and license plate. The results show that, the SG-YOLOv5 has the same mean average precision (mAP0.5) as the original; the number of model parameters, the FLOPs, and the model file size are reduced by 90.8%, 80.5%, and 88.8%, respectively. Additionally, the number of frames per second (FPS) is 2.7 times higher than that of the original. Therefore, the proposed SG-YOLOv5 can effectively achieve the purpose of lightweight and improve the detection speed while maintaining great detection accuracy.

摘要

电动自行车、骑手、头盔和车牌的集成快速检测技术对于维护交通安全具有重要意义。YOLOv5 是最先进的单阶段目标检测算法之一。然而,由于计算负载高和内存要求高,它很难部署在内存和计算资源有限的嵌入式系统上,例如无人机 (UAV)。在本文中,通过引入两种改进原始 YOLOv5 的机制,提出了一种用于快速检测电动自行车头盔和车牌的轻量级 YOLOv5 模型 (SG-YOLOv5)。首先,通过结合包含的两个轻量级网络 ShuffleNetv2 和 GhostNet,减轻了 YOLOv5s 骨干网络和 Neck 部分的重量。其次,通过采用基于 Add 的特征融合方法,有效地减少了参数数量和浮点运算 (FLOPs)。在此基础上,提出了一种基于场景的非真实抑制方法,以消除行人和车牌对停驶车辆的干扰,然后通过目标框的包含关系定位没有头盔的骑手的车牌并进行提取。为了验证 SG-YOLOv5 的性能,在自制的 RHNP 数据集上进行了实验,该数据集包含四个类别:骑手、头盔、无头盔和车牌。结果表明,SG-YOLOv5 的平均精度 (mAP0.5)与原始模型相同;模型参数数量、FLOPs 和模型文件大小分别减少了 90.8%、80.5%和 88.8%。此外,帧率 (FPS) 比原始模型提高了 2.7 倍。因此,所提出的 SG-YOLOv5 可以有效地实现轻量化的目的,同时在保持较高检测精度的情况下提高检测速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/b766240b73e2/sensors-23-04335-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/e619217d7d32/sensors-23-04335-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/710137192270/sensors-23-04335-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/661812f2ae28/sensors-23-04335-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/0075d2492451/sensors-23-04335-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/7c9e00310df0/sensors-23-04335-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/69e47e375f24/sensors-23-04335-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/ba6e1e61ba2a/sensors-23-04335-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/e1068b5e99be/sensors-23-04335-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/96616a43a1bc/sensors-23-04335-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/9db68c4368c8/sensors-23-04335-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/f9b71b4905dd/sensors-23-04335-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/5387775f0c2b/sensors-23-04335-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/c9a477ee30bb/sensors-23-04335-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/9cb2cab50b29/sensors-23-04335-g014a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/b766240b73e2/sensors-23-04335-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/e619217d7d32/sensors-23-04335-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/710137192270/sensors-23-04335-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/661812f2ae28/sensors-23-04335-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/0075d2492451/sensors-23-04335-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/7c9e00310df0/sensors-23-04335-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/69e47e375f24/sensors-23-04335-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/ba6e1e61ba2a/sensors-23-04335-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/e1068b5e99be/sensors-23-04335-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/96616a43a1bc/sensors-23-04335-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/9db68c4368c8/sensors-23-04335-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/f9b71b4905dd/sensors-23-04335-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/5387775f0c2b/sensors-23-04335-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/c9a477ee30bb/sensors-23-04335-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/9cb2cab50b29/sensors-23-04335-g014a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa8/10181523/b766240b73e2/sensors-23-04335-g015.jpg

相似文献

[1]
Fast Helmet and License Plate Detection Based on Lightweight YOLOv5.

Sensors (Basel). 2023-4-27

[2]
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

Sensors (Basel). 2023-6-22

[3]
Lightweight aerial image object detection algorithm based on improved YOLOv5s.

Sci Rep. 2023-5-15

[4]
YOLOv5_mamba: unmanned aerial vehicle object detection based on bidirectional dense feedback network and adaptive gate feature fusion.

Sci Rep. 2024-9-27

[5]
Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model.

Plants (Basel). 2023-8-23

[6]
STMS-YOLOv5: A Lightweight Algorithm for Gear Surface Defect Detection.

Sensors (Basel). 2023-6-28

[7]
Lightweight tea bud recognition network integrating GhostNet and YOLOv5.

Math Biosci Eng. 2022-9-5

[8]
ASG-YOLOv5: Improved YOLOv5 unmanned aerial vehicle remote sensing aerial images scenario for small object detection based on attention and spatial gating.

PLoS One. 2024

[9]
Lightweight Single-Stage Ship Object Detection Algorithm for Unmanned Surface Vessels Based on Improved YOLOv5.

Sensors (Basel). 2024-8-29

[10]
YOLOv5-LiNet: A lightweight network for fruits instance segmentation.

PLoS One. 2023

引用本文的文献

[1]
LSR-YOLO: A High-Precision, Lightweight Model for Sheep Face Recognition on the Mobile End.

Animals (Basel). 2023-5-31

[2]
UN-YOLOv5s: A UAV-Based Aerial Photography Detection Algorithm.

Sensors (Basel). 2023-6-26

本文引用的文献

[1]
Research on the Application of Visual Recognition in the Engine Room of Intelligent Ships.

Sensors (Basel). 2022-9-25

[2]
R-YOLO: A YOLO-Based Method for Arbitrary-Oriented Target Detection in High-Resolution Remote Sensing Images.

Sensors (Basel). 2022-7-30

[3]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[4]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

[5]
Helmets for preventing injury in motorcycle riders.

Cochrane Database Syst Rev. 2008-1-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索