Institute of Neural Information Processing, Ulm University, James-Franck-Ring, 89081 Ulm, Germany.
Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104 Freiburg im Breisgau, Germany.
Sensors (Basel). 2023 May 2;23(9):4451. doi: 10.3390/s23094451.
Conventional processing of sensory input often relies on uniform sampling leading to redundant information and unnecessary resource consumption throughout the entire processing pipeline. Neuromorphic computing challenges these conventions by mimicking biology and employing distributed event-based hardware. Based on the task of lateral auditory sound source localization (SSL), we propose a generic approach to map biologically inspired neural networks to neuromorphic hardware. First, we model the neural mechanisms of SSL based on the interaural level difference (ILD). Afterward, we identify generic computational motifs within the model and transform them into spike-based components. A hardware-specific step then implements them on neuromorphic hardware. We exemplify our approach by mapping the neural SSL model onto two platforms, namely the IBM TrueNorth Neurosynaptic System and SpiNNaker. Both implementations have been tested on synthetic and real-world data in terms of neural tunings and readout characteristics. For synthetic stimuli, both implementations provide a perfect readout (100% accuracy). Preliminary real-world experiments yield accuracies of 78% (TrueNorth) and 13% (SpiNNaker), RMSEs of 41∘ and 39∘, and MAEs of 18∘ and 29∘, respectively. Overall, the proposed mapping approach allows for the successful implementation of the same SSL model on two different neuromorphic architectures paving the way toward more hardware-independent neural SSL.
传统的感觉输入处理通常依赖于均匀采样,导致整个处理管道中冗余信息和不必要的资源消耗。神经形态计算通过模拟生物学并采用分布式基于事件的硬件来挑战这些传统。基于侧向听觉声源定位 (SSL) 的任务,我们提出了一种将受生物启发的神经网络映射到神经形态硬件的通用方法。首先,我们基于耳间水平差 (ILD) 对 SSL 的神经机制进行建模。之后,我们在模型中识别通用计算模式,并将其转换为基于尖峰的组件。然后,一个特定于硬件的步骤将它们实现在神经形态硬件上。我们通过将神经 SSL 模型映射到两个平台上来说明我们的方法,即 IBM TrueNorth 神经突触系统和 SpiNNaker。在神经调谐和读出特性方面,这两种实现都已经在合成数据和真实世界数据上进行了测试。对于合成刺激,两种实现都提供了完美的读出 (100%的准确率)。初步的真实世界实验分别产生了 78% (TrueNorth) 和 13% (SpiNNaker) 的准确率,41∘ 和 39∘ 的 RMSE,以及 18∘ 和 29∘ 的 MAE。总的来说,所提出的映射方法允许在两种不同的神经形态架构上成功实现相同的 SSL 模型,为更独立于硬件的神经 SSL 铺平了道路。