Suppr超能文献

感觉运动解码的矢量原理

Vectorial principles of sensorimotor decoding.

作者信息

Tsytsarev Vassiliy, Volnova Anna, Rojas Legier, Sanabria Priscila, Ignashchenkova Alla, Ortiz-Rivera Jescelica, Alves Janaina, Inyushin Mikhail

机构信息

Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, United States.

Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.

出版信息

Front Hum Neurosci. 2025 Jul 7;19:1612626. doi: 10.3389/fnhum.2025.1612626. eCollection 2025.

Abstract

This review explores the vectorial principles underlying sensorimotor decoding across diverse biological systems. From the encoding of light wavelength in retinal cones to direction-specific motor cortex activity in primates, neural representations frequently rely on population vector coding-a scheme, in which neurons with directional or modality-specific preferences integrate their activity to encode stimuli or motor commands. Early studies on color vision and motor control introduced concepts of vector summation and neuronal tuning, evolving toward more precise models such as the von Mises distribution. Research in invertebrates, including leeches and snails, reveals that even simple nervous systems utilize population vector principles for reflexes and coordinated movements. Furthermore, analysis of joint limb motion suggests biomechanical optimization aligned with Fibonacci proportions, facilitating efficient neural and mechanical control. The review highlights that motor units and neurons often display multimodal or overlapping tuning fields, reinforcing the need for population-based decoding strategies. These findings suggest a unifying vectorial framework for sensory and motor coding, with implications for periprosthetic and brain-machine interface.

摘要

本综述探讨了跨多种生物系统的感觉运动解码背后的矢量原理。从视网膜视锥细胞中光波长的编码到灵长类动物中方向特异性的运动皮层活动,神经表征常常依赖于群体矢量编码——一种神经元根据方向或模态特异性偏好整合其活动以编码刺激或运动指令的方案。早期关于颜色视觉和运动控制的研究引入了矢量求和和神经元调谐的概念,并逐渐发展为更精确的模型,如冯·米塞斯分布。对包括水蛭和蜗牛在内的无脊椎动物的研究表明,即使是简单的神经系统也利用群体矢量原理来进行反射和协调运动。此外,对关节肢体运动的分析表明,生物力学优化与斐波那契比例一致,有助于实现高效的神经和机械控制。该综述强调,运动单位和神经元常常表现出多模态或重叠的调谐场,这进一步凸显了基于群体的解码策略的必要性。这些发现为感觉和运动编码提出了一个统一的矢量框架,对假体周围和脑机接口具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/291c/12287768/36b37a259d53/fnhum-19-1612626-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验