Suppr超能文献

细胞渗透性变色龙肽:从头环肽设计中利用构象动力学。

Cell-permeable chameleonic peptides: Exploiting conformational dynamics in de novo cyclic peptide design.

机构信息

Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA.

出版信息

Curr Opin Struct Biol. 2023 Jun;80:102603. doi: 10.1016/j.sbi.2023.102603. Epub 2023 May 12.

Abstract

Membrane-traversing peptides offer opportunities for targeting intracellular proteins and oral delivery. Despite progress in understanding the mechanisms underlying membrane traversal in natural cell-permeable peptides, there are still several challenges to designing membrane-traversing peptides with diverse shapes and sizes. Conformational flexibility appears to be a key determinant of membrane permeability of large macrocycles. We review recent developments in the design and validation of chameleonic cyclic peptides, which can switch between alternative conformations to enable improved permeability through cell membranes, while still maintaining reasonable solubility and exposed polar functional groups for target protein binding. Finally, we discuss the principles, strategies, and practical considerations for rational design, discovery, and validation of permeable chameleonic peptides.

摘要

穿膜肽为靶向细胞内蛋白和口服递药提供了机会。尽管在理解天然细胞通透肽的穿膜机制方面取得了进展,但设计具有不同形状和大小的穿膜肽仍然存在一些挑战。构象灵活性似乎是大环类透膜性的关键决定因素。我们综述了近期在变色龙环肽的设计和验证方面的进展,这些环肽可以在不同构象之间切换,从而改善穿过细胞膜的通透性,同时仍然保持合理的溶解度和暴露的极性功能基团以结合靶蛋白。最后,我们讨论了合理设计、发现和验证透膜变色龙肽的原则、策略和实际考虑因素。

相似文献

1
Cell-permeable chameleonic peptides: Exploiting conformational dynamics in de novo cyclic peptide design.
Curr Opin Struct Biol. 2023 Jun;80:102603. doi: 10.1016/j.sbi.2023.102603. Epub 2023 May 12.
2
Solution Conformations Explain the Chameleonic Behaviour of Macrocyclic Drugs.
Chemistry. 2020 Apr 21;26(23):5231-5244. doi: 10.1002/chem.201905599. Epub 2020 Apr 6.
4
Targeting intracellular protein-protein interactions with cell-permeable cyclic peptides.
Curr Opin Chem Biol. 2017 Jun;38:80-86. doi: 10.1016/j.cbpa.2017.03.011. Epub 2017 Apr 4.
5
Controlling the Chameleonic Behavior and Membrane Permeability of Cyclosporine Derivatives via Backbone and Side Chain Modifications.
J Med Chem. 2023 Sep 28;66(18):13189-13204. doi: 10.1021/acs.jmedchem.3c01140. Epub 2023 Sep 17.
6
Conformation and Permeability: Cyclic Hexapeptide Diastereomers.
J Chem Inf Model. 2019 Jun 24;59(6):2952-2963. doi: 10.1021/acs.jcim.9b00217. Epub 2019 May 8.
7
Membrane Permeability in Cyclic Peptides is Modulated by Core Conformations.
J Chem Inf Model. 2021 Jan 25;61(1):263-269. doi: 10.1021/acs.jcim.0c00803. Epub 2020 Dec 22.
9
cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? .
Chemistry. 2015 Oct 19;21(43):15148-52. doi: 10.1002/chem.201501600. Epub 2015 Sep 4.
10

引用本文的文献

1
Ai-driven de novo design of customizable membrane permeable cyclic peptides.
J Comput Aided Mol Des. 2025 Aug 9;39(1):63. doi: 10.1007/s10822-025-00639-8.
2
Heterophyllin B: Combining Isotropic and Anisotropic NMR for the Conformational Analysis of a Natural Occurring Cyclic Peptide.
Magn Reson Chem. 2025 May-Jun;63(5-6):417-423. doi: 10.1002/mrc.5523. Epub 2025 Apr 20.
3
PepINVENT: generative peptide design beyond natural amino acids.
Chem Sci. 2025 Apr 16;16(20):8682-8696. doi: 10.1039/d4sc07642g. eCollection 2025 May 21.
4
Insights into conformational ensembles of compositionally identical disordered peptidomimetics.
Polym Chem. 2024 Aug 7;15(29):2970-2980. doi: 10.1039/D4PY00341A. Epub 2024 Jul 4.
5
Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics.
Chem Rev. 2024 Nov 27;124(22):13020-13093. doi: 10.1021/acs.chemrev.4c00423. Epub 2024 Nov 14.
7
A Computational Pipeline for Accurate Prioritization of Protein-Protein Binding Candidates in High-Throughput Protein Libraries.
Angew Chem Int Ed Engl. 2024 Jun 10;63(24):e202405767. doi: 10.1002/anie.202405767. Epub 2024 May 8.
8
Molecular chameleons in drug discovery.
Nat Rev Chem. 2024 Jan;8(1):45-60. doi: 10.1038/s41570-023-00563-1. Epub 2023 Dec 20.
9
Peptides of a Feather: How Computation Is Taking Peptide Therapeutics under Its Wing.
Genes (Basel). 2023 May 29;14(6):1194. doi: 10.3390/genes14061194.

本文引用的文献

1
Facilitating the structural characterisation of non-canonical amino acids in biomolecular NMR.
Magn Reson (Gott). 2023 Feb 24;4(1):57-72. doi: 10.5194/mr-4-57-2023. eCollection 2023.
2
Amber Light Control of Peptide Secondary Structure by a Perfluoroaromatic Azobenzene Photoswitch.
Chembiochem. 2023 Mar 1;24(5):e202200570. doi: 10.1002/cbic.202200570. Epub 2023 Jan 26.
3
Benchmarking AlphaFold2 on peptide structure prediction.
Structure. 2023 Jan 5;31(1):111-119.e2. doi: 10.1016/j.str.2022.11.012. Epub 2022 Dec 15.
4
Going Viral: An Investigation into the Chameleonic Behaviour of Antiviral Compounds.
Chemistry. 2023 Feb 7;29(8):e202202798. doi: 10.1002/chem.202202798. Epub 2022 Dec 14.
5
Accurate de novo design of membrane-traversing macrocycles.
Cell. 2022 Sep 15;185(19):3520-3532.e26. doi: 10.1016/j.cell.2022.07.019. Epub 2022 Aug 29.
6
Atomic View of Aqueous Cyclosporine A: Unpacking a Decades-Old Mystery.
J Am Chem Soc. 2022 Jul 20;144(28):12602-12607. doi: 10.1021/jacs.2c01743. Epub 2022 Jul 5.
7
Structure prediction of cyclic peptides by molecular dynamics + machine learning.
Chem Sci. 2021 Nov 5;12(44):14927-14936. doi: 10.1039/d1sc05562c. eCollection 2021 Nov 17.
8
Cyclosporin A: Conformational Complexity and Chameleonicity.
J Chem Inf Model. 2021 Nov 22;61(11):5601-5613. doi: 10.1021/acs.jcim.1c00771. Epub 2021 Oct 21.
9
The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
Acc Chem Res. 2021 Sep 21;54(18):3604-3617. doi: 10.1021/acs.accounts.1c00391. Epub 2021 Sep 10.
10
Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems.
Chem Rev. 2022 Apr 27;122(8):7562-7623. doi: 10.1021/acs.chemrev.1c00279. Epub 2021 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验