Department of Chemistry and Quantum Theory Project, University of Florida, Leigh Hall 240, Gainesville, FL, USA.
Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane Rm 636, Piscataway, NJ 08854, USA.
Angew Chem Int Ed Engl. 2024 Jun 10;63(24):e202405767. doi: 10.1002/anie.202405767. Epub 2024 May 8.
Identifying the interactome for a protein of interest is challenging due to the large number of possible binders. High-throughput experimental approaches narrow down possible binding partners but often include false positives. Furthermore, they provide no information about what the binding region is (e.g., the binding epitope). We introduce a novel computational pipeline based on an AlphaFold2 (AF) Competitive Binding Assay (AF-CBA) to identify proteins that bind a target of interest from a pull-down experiment and the binding epitope. Our focus is on proteins that bind the Extraterminal (ET) domain of Bromo and Extraterminal domain (BET) proteins, but we also introduce nine additional systems to show transferability to other peptide-protein systems. We describe a series of limitations to the methodology based on intrinsic deficiencies of AF and AF-CBA to help users identify scenarios where the approach will be most useful. Given the method's speed and accuracy, we anticipate its broad applicability to identify binding epitope regions among potential partners, setting the stage for experimental verification.
由于可能的结合物数量众多,鉴定感兴趣的蛋白质的互作组具有挑战性。高通量实验方法缩小了可能的结合伙伴的范围,但通常包括假阳性。此外,它们没有提供关于结合区域是什么的信息(例如,结合表位)。我们引入了一种基于 AlphaFold2(AF)竞争性结合测定(AF-CBA)的新型计算管道,以从下拉实验中鉴定与目标结合的蛋白质和结合表位。我们的重点是与溴和末端结构域(BET)蛋白的末端结构域(ET)结合的蛋白质,但我们还介绍了另外九个系统,以展示其对其他肽-蛋白系统的可转移性。我们根据 AF 和 AF-CBA 的内在缺陷描述了该方法的一系列局限性,以帮助用户确定该方法最有用的场景。鉴于该方法的速度和准确性,我们预计它将广泛适用于鉴定潜在伙伴之间的结合表位区域,为实验验证奠定基础。