Suppr超能文献

高通量蛋白质文库中蛋白质-蛋白质结合候选物的准确优先级排序的计算流程。

A Computational Pipeline for Accurate Prioritization of Protein-Protein Binding Candidates in High-Throughput Protein Libraries.

机构信息

Department of Chemistry and Quantum Theory Project, University of Florida, Leigh Hall 240, Gainesville, FL, USA.

Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane Rm 636, Piscataway, NJ 08854, USA.

出版信息

Angew Chem Int Ed Engl. 2024 Jun 10;63(24):e202405767. doi: 10.1002/anie.202405767. Epub 2024 May 8.

Abstract

Identifying the interactome for a protein of interest is challenging due to the large number of possible binders. High-throughput experimental approaches narrow down possible binding partners but often include false positives. Furthermore, they provide no information about what the binding region is (e.g., the binding epitope). We introduce a novel computational pipeline based on an AlphaFold2 (AF) Competitive Binding Assay (AF-CBA) to identify proteins that bind a target of interest from a pull-down experiment and the binding epitope. Our focus is on proteins that bind the Extraterminal (ET) domain of Bromo and Extraterminal domain (BET) proteins, but we also introduce nine additional systems to show transferability to other peptide-protein systems. We describe a series of limitations to the methodology based on intrinsic deficiencies of AF and AF-CBA to help users identify scenarios where the approach will be most useful. Given the method's speed and accuracy, we anticipate its broad applicability to identify binding epitope regions among potential partners, setting the stage for experimental verification.

摘要

由于可能的结合物数量众多,鉴定感兴趣的蛋白质的互作组具有挑战性。高通量实验方法缩小了可能的结合伙伴的范围,但通常包括假阳性。此外,它们没有提供关于结合区域是什么的信息(例如,结合表位)。我们引入了一种基于 AlphaFold2(AF)竞争性结合测定(AF-CBA)的新型计算管道,以从下拉实验中鉴定与目标结合的蛋白质和结合表位。我们的重点是与溴和末端结构域(BET)蛋白的末端结构域(ET)结合的蛋白质,但我们还介绍了另外九个系统,以展示其对其他肽-蛋白系统的可转移性。我们根据 AF 和 AF-CBA 的内在缺陷描述了该方法的一系列局限性,以帮助用户确定该方法最有用的场景。鉴于该方法的速度和准确性,我们预计它将广泛适用于鉴定潜在伙伴之间的结合表位区域,为实验验证奠定基础。

相似文献

1
A Computational Pipeline for Accurate Prioritization of Protein-Protein Binding Candidates in High-Throughput Protein Libraries.
Angew Chem Int Ed Engl. 2024 Jun 10;63(24):e202405767. doi: 10.1002/anie.202405767. Epub 2024 May 8.
3
Structure Determination of Challenging Protein-Peptide Complexes Combining NMR Chemical Shift Data and Molecular Dynamics Simulations.
J Chem Inf Model. 2023 Apr 10;63(7):2058-2072. doi: 10.1021/acs.jcim.2c01595. Epub 2023 Mar 29.
6
High-throughput discovery of inhibitory protein fragments with AlphaFold.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2322412122. doi: 10.1073/pnas.2322412122. Epub 2025 Feb 3.
7
A Multireporter Bacterial 2-Hybrid Assay for the High-Throughput and Dynamic Assay of PDZ Domain-Peptide Interactions.
ACS Synth Biol. 2019 May 17;8(5):918-928. doi: 10.1021/acssynbio.8b00499. Epub 2019 Apr 18.
8
Reverse interactomics: decoding protein-protein interactions with combinatorial peptide libraries.
Mol Biosyst. 2007 Aug;3(8):536-41. doi: 10.1039/b706041f. Epub 2007 Jun 18.
10
Peptide libraries: from epitope mapping to in-depth high-throughput analysis.
Trends Pharmacol Sci. 2024 Jul;45(7):579-582. doi: 10.1016/j.tips.2024.04.004. Epub 2024 May 8.

引用本文的文献

1
Engineering Peptide Modulators for T-Cell Migration by Structural Scaffold Matching.
J Med Chem. 2025 Aug 28;68(16):17202-17220. doi: 10.1021/acs.jmedchem.5c00677. Epub 2025 Aug 12.
2
High-throughput discovery of inhibitory protein fragments with AlphaFold.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2322412122. doi: 10.1073/pnas.2322412122. Epub 2025 Feb 3.
3
MELD in Action: Harnessing Data to Accelerate Molecular Dynamics.
J Chem Inf Model. 2025 Feb 24;65(4):1685-1693. doi: 10.1021/acs.jcim.4c02108. Epub 2025 Feb 2.
4
High-throughput discovery of inhibitory protein fragments with AlphaFold.
bioRxiv. 2024 Sep 19:2023.12.19.572389. doi: 10.1101/2023.12.19.572389.

本文引用的文献

1
Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era.
Wiley Interdiscip Rev Comput Mol Sci. 2024 Jan-Feb;14(1). doi: 10.1002/wcms.1693. Epub 2023 Nov 12.
2
Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation.
Mol Syst Biol. 2024 Feb;20(2):75-97. doi: 10.1038/s44320-023-00005-6. Epub 2024 Jan 15.
3
Accurate modeling of peptide-MHC structures with AlphaFold.
Structure. 2024 Feb 1;32(2):228-241.e4. doi: 10.1016/j.str.2023.11.011. Epub 2023 Dec 18.
4
A Transformer-Based Ensemble Framework for the Prediction of Protein-Protein Interaction Sites.
Research (Wash D C). 2023 Sep 27;6:0240. doi: 10.34133/research.0240. eCollection 2023.
5
Improved prediction of MHC-peptide binding using protein language models.
Front Bioinform. 2023 Aug 17;3:1207380. doi: 10.3389/fbinf.2023.1207380. eCollection 2023.
6
Modelling peptide-protein complexes: docking, simulations and machine learning.
QRB Discov. 2022 Sep 19;3:e17. doi: 10.1017/qrd.2022.14. eCollection 2022.
7
Cell-permeable chameleonic peptides: Exploiting conformational dynamics in de novo cyclic peptide design.
Curr Opin Struct Biol. 2023 Jun;80:102603. doi: 10.1016/j.sbi.2023.102603. Epub 2023 May 12.
8
Structure Determination of Challenging Protein-Peptide Complexes Combining NMR Chemical Shift Data and Molecular Dynamics Simulations.
J Chem Inf Model. 2023 Apr 10;63(7):2058-2072. doi: 10.1021/acs.jcim.2c01595. Epub 2023 Mar 29.
9
Ranking Peptide Binders by Affinity with AlphaFold.
Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202213362. doi: 10.1002/anie.202213362. Epub 2023 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验