Suppr超能文献

高通量蛋白质文库中蛋白质-蛋白质结合候选物的准确优先级排序的计算流程。

A Computational Pipeline for Accurate Prioritization of Protein-Protein Binding Candidates in High-Throughput Protein Libraries.

机构信息

Department of Chemistry and Quantum Theory Project, University of Florida, Leigh Hall 240, Gainesville, FL, USA.

Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane Rm 636, Piscataway, NJ 08854, USA.

出版信息

Angew Chem Int Ed Engl. 2024 Jun 10;63(24):e202405767. doi: 10.1002/anie.202405767. Epub 2024 May 8.

Abstract

Identifying the interactome for a protein of interest is challenging due to the large number of possible binders. High-throughput experimental approaches narrow down possible binding partners but often include false positives. Furthermore, they provide no information about what the binding region is (e.g., the binding epitope). We introduce a novel computational pipeline based on an AlphaFold2 (AF) Competitive Binding Assay (AF-CBA) to identify proteins that bind a target of interest from a pull-down experiment and the binding epitope. Our focus is on proteins that bind the Extraterminal (ET) domain of Bromo and Extraterminal domain (BET) proteins, but we also introduce nine additional systems to show transferability to other peptide-protein systems. We describe a series of limitations to the methodology based on intrinsic deficiencies of AF and AF-CBA to help users identify scenarios where the approach will be most useful. Given the method's speed and accuracy, we anticipate its broad applicability to identify binding epitope regions among potential partners, setting the stage for experimental verification.

摘要

由于可能的结合物数量众多,鉴定感兴趣的蛋白质的互作组具有挑战性。高通量实验方法缩小了可能的结合伙伴的范围,但通常包括假阳性。此外,它们没有提供关于结合区域是什么的信息(例如,结合表位)。我们引入了一种基于 AlphaFold2(AF)竞争性结合测定(AF-CBA)的新型计算管道,以从下拉实验中鉴定与目标结合的蛋白质和结合表位。我们的重点是与溴和末端结构域(BET)蛋白的末端结构域(ET)结合的蛋白质,但我们还介绍了另外九个系统,以展示其对其他肽-蛋白系统的可转移性。我们根据 AF 和 AF-CBA 的内在缺陷描述了该方法的一系列局限性,以帮助用户确定该方法最有用的场景。鉴于该方法的速度和准确性,我们预计它将广泛适用于鉴定潜在伙伴之间的结合表位区域,为实验验证奠定基础。

相似文献

6
High-throughput discovery of inhibitory protein fragments with AlphaFold.利用AlphaFold进行抑制性蛋白质片段的高通量发现。
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2322412122. doi: 10.1073/pnas.2322412122. Epub 2025 Feb 3.
10
Peptide libraries: from epitope mapping to in-depth high-throughput analysis.肽库:从表位作图到深度高通量分析。
Trends Pharmacol Sci. 2024 Jul;45(7):579-582. doi: 10.1016/j.tips.2024.04.004. Epub 2024 May 8.

引用本文的文献

1
2
High-throughput discovery of inhibitory protein fragments with AlphaFold.利用AlphaFold进行抑制性蛋白质片段的高通量发现。
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2322412122. doi: 10.1073/pnas.2322412122. Epub 2025 Feb 3.
3
MELD in Action: Harnessing Data to Accelerate Molecular Dynamics.MELD在行动:利用数据加速分子动力学
J Chem Inf Model. 2025 Feb 24;65(4):1685-1693. doi: 10.1021/acs.jcim.4c02108. Epub 2025 Feb 2.

本文引用的文献

1
Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era.变革基于肽的药物发现:后AlphaFold时代的进展
Wiley Interdiscip Rev Comput Mol Sci. 2024 Jan-Feb;14(1). doi: 10.1002/wcms.1693. Epub 2023 Nov 12.
3
Accurate modeling of peptide-MHC structures with AlphaFold.使用 AlphaFold 对肽-MHC 结构进行精确建模。
Structure. 2024 Feb 1;32(2):228-241.e4. doi: 10.1016/j.str.2023.11.011. Epub 2023 Dec 18.
5
Improved prediction of MHC-peptide binding using protein language models.使用蛋白质语言模型改进对MHC-肽结合的预测。
Front Bioinform. 2023 Aug 17;3:1207380. doi: 10.3389/fbinf.2023.1207380. eCollection 2023.
9
Ranking Peptide Binders by Affinity with AlphaFold.利用AlphaFold按亲和力对肽结合物进行排名。
Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202213362. doi: 10.1002/anie.202213362. Epub 2023 Jan 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验