Wu Xiaoyan, van der Heide Tammo, Wen Shizheng, Frauenheim Thomas, Tretiak Sergei, Yam ChiYung, Zhang Yu
Shenzhen JL Computational Science and Applied Research Institute Longhua District Shenzhen 518110 China.
Bremen Center for Computational Materials Science, University of Bremen Bremen 28359 Germany.
Chem Sci. 2023 Apr 8;14(18):4714-4723. doi: 10.1039/d2sc06648c. eCollection 2023 May 10.
Heterogeneous catalysis of adsorbates on metallic surfaces mediated by plasmons has potential high photoelectric conversion efficiency and controllable reaction selectivity. Theoretical modeling of dynamical reaction processes enables in-depth analyses complementing experimental investigations. Especially for plasmon-mediated chemical transformations, light absorption, photoelectric conversion, electron-electron scattering, and electron-phonon coupling occur simultaneously on different timescales, making it very challenging to delineate the complex interplay of different factors. In this work, a trajectory surface hopping non-adiabatic molecular dynamics method is used to investigate the dynamics of plasmon excitation in an Au-CO system, including hot carrier generation, plasmon energy relaxation, and CO activation induced by electron-vibration coupling. The electronic properties indicate that when Au-CO is excited, a partial charge transfer takes place from Au to CO. On the other hand, dynamical simulations show that hot carriers generated after plasmon excitation transfer back and forth between Au and CO. Meanwhile, the C-O stretching mode is activated due to non-adiabatic couplings. The efficiency of plasmon-mediated transformations (∼40%) is obtained based on the ensemble average of these quantities. Our simulations provide important dynamical and atomistic insights into plasmon-mediated chemical transformations from the perspective of non-adiabatic simulations.
等离子体激元介导的吸附质在金属表面的多相催化具有潜在的高光电转换效率和可控的反应选择性。动力学反应过程的理论建模能够进行深入分析,以补充实验研究。特别是对于等离子体激元介导的化学转化,光吸收、光电转换、电子-电子散射和电子-声子耦合在不同的时间尺度上同时发生,这使得描绘不同因素之间复杂的相互作用极具挑战性。在这项工作中,采用轨迹表面跳跃非绝热分子动力学方法研究了Au-CO体系中等离子体激元激发的动力学,包括热载流子的产生、等离子体激元能量弛豫以及电子-振动耦合诱导的CO活化。电子性质表明,当Au-CO被激发时,会发生从Au到CO的部分电荷转移。另一方面,动力学模拟表明,等离子体激元激发后产生的热载流子在Au和CO之间来回转移。同时,由于非绝热耦合,C-O伸缩模式被激活。基于这些量的系综平均值,得到了等离子体激元介导的转化效率(约40%)。我们的模拟从非绝热模拟的角度为等离子体激元介导的化学转化提供了重要的动力学和原子尺度的见解。