Suppr超能文献

近年来,I 型有机光敏剂在克服肿瘤缺氧的高效光动力治疗方面取得了进展。

Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia.

机构信息

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.

出版信息

J Mater Chem B. 2023 May 31;11(21):4600-4618. doi: 10.1039/d3tb00545c.

Abstract

Photodynamic therapy (PDT) with an oxygen-dependent character is a noninvasive therapeutic method for cancer treatment. However, its clinical therapeutic effect is greatly restricted by tumor hypoxia. What's more, both PDT-mediated oxygen consumption and microvascular damage aggravate tumor hypoxia, thus, further impeding therapeutic outcomes. Compared to type II PDT with high oxygen dependence and high oxygen consumption, type I PDT with less oxygen consumption exhibits great potential to overcome the vicious hypoxic plight in solid tumors. Type I photosensitizers (PSs) are significantly important for determining the therapeutic efficacy of PDT, which performs an electron transfer photochemical reaction with the surrounding oxygen/substrates to generate highly cytotoxic free radicals such as superoxide radicals (˙O) as type I ROS. In particular, the primary precursor (˙O) would progressively undergo a superoxide dismutase (SOD)-mediated disproportionation reaction and a Haber-Weiss/Fenton reaction, yielding higher cytotoxic species (˙OH) with better anticancer effects. As a result, developing high-performance type I PSs to treat hypoxic tumors has become more and more important and urgent. Herein, the latest progress of organic type I PSs (such as AIE-active cationic/neutral PSs, cationic/neutral PSs, polymer-based PSs and supramolecular self-assembled PSs) for monotherapy or synergistic therapeutic modalities is summarized. The molecular design principles and strategies (donor-acceptor system, anion-π incorporation, polymerization and cationization) are highlighted. Furthermore, the future challenges and prospects of type I PSs in hypoxia-overcoming PDT are proposed.

摘要

光动力疗法(PDT)具有氧依赖性,是一种用于癌症治疗的非侵入性治疗方法。然而,其临床治疗效果受到肿瘤缺氧的极大限制。此外,PDT 介导的耗氧量和微血管损伤加剧了肿瘤缺氧,从而进一步阻碍了治疗效果。与高耗氧和高耗氧的 II 型 PDT 相比,I 型 PDT 耗氧量较低,具有克服实体瘤恶性缺氧困境的巨大潜力。I 型光敏剂(PS)对于确定 PDT 的治疗效果非常重要,它与周围的氧气/底物发生电子转移光化学反应,生成具有细胞毒性的自由基,如超氧自由基(˙O)作为 I 型 ROS。特别是,主要前体(˙O)会逐渐经历超氧化物歧化酶(SOD)介导的歧化反应和 Haber-Weiss/Fenton 反应,产生具有更好抗癌效果的更高细胞毒性物质(˙OH)。因此,开发用于治疗缺氧肿瘤的高性能 I 型 PS 变得越来越重要和紧迫。本文总结了用于单一疗法或协同治疗方式的有机 I 型 PS(如 AIE-活性阳离子/中性 PS、阳离子/中性 PS、基于聚合物的 PS 和超分子自组装 PS)的最新进展。重点介绍了分子设计原则和策略(供体-受体体系、阴离子-π 结合、聚合和阳离子化)。此外,还提出了 I 型 PS 在克服缺氧 PDT 中的未来挑战和前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验