Birhan Yihenew Simegniew, Hsu Chia-Yen, Yu Hsiu-Ping, Lai Ping-Shan
Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan.
Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia.
Mater Today Bio. 2025 Feb 19;31:101587. doi: 10.1016/j.mtbio.2025.101587. eCollection 2025 Apr.
The clinical efficacy of photodynamic therapy (PDT) is hampered by the low oxygen tension highly prevalent in solid tumors. Hence, improving the oxygen tension by suppling hyperbaric oxygen (HBO), through oxygen delivery nanoarchitectures or by designing oxygen-generating nanoenzymes is considered a robust approach for PDT that involves type II photosensitizers (PS). In this study, we successfully synthesized 4-arm chlorin-polylactide (CPLA) conjugates from -tetra-3-hydroxymethyl phenyl chlorin (-THMPC) and D, L-lactide ring opening polymerization (ROP), that could assemble into stable NPs, for the delivery of molecular oxygen into inner regions of hypoxic tumors (HTs). The monodispersed Air-CPLA-NPs prevented the PS, chlorin, from aggregation-induced quenching and loss of signal. Moreover, the Air-CPLA-NPs produced a marked level of intracellular ROS or O upon light irradiation (660 ± 10 nm, 20 J/cm) which is indispensable for the prolonged and efficient PDT of HTs. The confocal laser scanning microscopy (CLSM) images revealed the gradual cellular internalization of Air-CPLA-NPs in hypoxic H1299 cells. It unveiled significant dose-dependent cytotoxicity towards normoxic and hypoxic H1299 cells. Furthermore, the anticancer study displayed the tumor growth inhibition (TGI) effect of Air-CPLA-NPs + PDT in normoxic and hypoxic xenograft mice models. Accordingly, the present architecture improved the PDT efficacy by overcoming the oxygen barrier in the inner tissues of HTs demonstrating the prospect of CPLA-NPs as an "oxygen shuttle" for the clinical PDT of solid tumors.
光动力疗法(PDT)的临床疗效受到实体瘤中普遍存在的低氧张力的限制。因此,通过提供高压氧(HBO)、利用氧气递送纳米结构或设计产氧纳米酶来提高氧张力,被认为是一种针对涉及II型光敏剂(PS)的PDT的有效方法。在本研究中,我们通过四(3-羟甲基苯基)二氢卟吩(-THMPC)与D,L-丙交酯的开环聚合(ROP)成功合成了四臂二氢卟吩-聚丙交酯(CPLA)共轭物,其可组装成稳定的纳米颗粒,用于将分子氧递送至缺氧肿瘤(HT)的内部区域。单分散的载氧CPLA纳米颗粒可防止PS二氢卟吩发生聚集诱导猝灭和信号损失。此外,载氧CPLA纳米颗粒在光照(660±10nm,20J/cm²)下可产生显著水平的细胞内活性氧(ROS)或氧,这对于HT的长期有效PDT是必不可少的。共聚焦激光扫描显微镜(CLSM)图像显示载氧CPLA纳米颗粒在缺氧的H1299细胞中逐渐被细胞内化。它揭示了对常氧和缺氧H1299细胞具有显著的剂量依赖性细胞毒性。此外,抗癌研究显示了载氧CPLA纳米颗粒+PDT在常氧和缺氧异种移植小鼠模型中的肿瘤生长抑制(TGI)作用。因此,目前的结构通过克服HT内部组织中的氧屏障提高了PDT疗效,证明了CPLA纳米颗粒作为实体瘤临床PDT的“氧穿梭体”的前景。