Ab Kadir Muhammad Akram, Abdul Manaf Rosliza, Mokhtar Siti Aisah, Ismail Luthffi Idzhar
Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
Department of Electrical & Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor, Malaysia.
JMIR Res Protoc. 2023 May 15;12:e43712. doi: 10.2196/43712.
Leptospirosis is considered a neglected zoonotic disease in temperate regions but an endemic disease in countries with tropical climates such as South America, Southern Asia, and Southeast Asia. There has been an increase in leptospirosis incidence in Malaysia from 1.45 to 25.94 cases per 100,000 population between 2005 and 2014. With increasing incidence in Selangor, Malaysia, and frequent climate change dynamics, a study on the disease hotspot areas and their association with the hydroclimatic factors would further enhance disease surveillance and public health interventions.
This study aims to examine the association between the spatio-temporal distribution of leptospirosis hotspot areas from 2011 to 2019 with the hydroclimatic factors in Selangor using the geographical information system and remote sensing techniques to develop a leptospirosis hotspot predictive model.
This will be an ecological cross-sectional study with geographical information system and remote sensing mapping and analysis concerning leptospirosis using secondary data. Leptospirosis cases in Selangor from January 2011 to December 2019 shall be obtained from the Selangor State Health Department. Laboratory-confirmed cases with data on the possible source of infection would be identified and georeferenced according to their longitude and latitudes. Topographic data consisting of subdistrict boundaries and the distribution of rivers in Selangor will be obtained from the Department of Survey and Mapping. The ArcGIS Pro software will be used to evaluate the clustering of the cases and mapped using the Getis-Ord Gi* tool. The satellite images for rainfall and land surface temperature will be acquired from the Giovanni National Aeronautics and Space Administration EarthData website and processed to obtain the average monthly values in millimeters and degrees Celsius. Meanwhile, the average monthly river hydrometric levels will be obtained from the Department of Drainage and Irrigation. Data are then inputted as thematic layers and in the ArcGIS software for further analysis. The artificial neural network analysis in artificial intelligence Phyton software will then be used to obtain the leptospirosis hotspot predictive model.
This research was funded as of November 2022. Data collection, processing, and analysis commenced in December 2022, and the results of the study are expected to be published by the end of 2024. The leptospirosis distribution and clusters may be significantly associated with the hydroclimatic factors of rainfall, land surface temperature, and the river hydrometric level.
This study will explore the associations of leptospirosis hotspot areas with the hydroclimatic factors in Selangor and subsequently the development of a leptospirosis predictive model. The constructed predictive model could potentially be used to design and enhance public health initiatives for disease prevention.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/43712.
钩端螺旋体病在温带地区被视为一种被忽视的人畜共患病,但在南美洲、南亚和东南亚等热带气候国家则是一种地方病。2005年至2014年间,马来西亚钩端螺旋体病发病率从每10万人1.45例增至25.94例。随着马来西亚雪兰莪州发病率的上升以及频繁的气候变化动态,对疾病热点地区及其与水文气候因素的关联进行研究将进一步加强疾病监测和公共卫生干预措施。
本研究旨在利用地理信息系统和遥感技术,研究2011年至2019年雪兰莪州钩端螺旋体病热点地区的时空分布与水文气候因素之间的关联,以建立钩端螺旋体病热点预测模型。
这将是一项生态横断面研究,利用地理信息系统和遥感技术对钩端螺旋体病进行绘图和分析,并使用二手数据。2011年1月至2019年12月雪兰莪州的钩端螺旋体病病例将从雪兰莪州卫生部获取。将识别出具有感染可能来源数据的实验室确诊病例,并根据其经度和纬度进行地理定位。雪兰莪州的地形数据,包括分区边界和河流分布,将从测绘局获取。将使用ArcGIS Pro软件评估病例的聚集情况,并使用Getis-Ord Gi*工具进行绘图。降雨和陆地表面温度的卫星图像将从美国国家航空航天局地球观测站Giovanni网站获取,并进行处理以获得以毫米为单位的月平均值和以摄氏度为单位的温度值。同时,月平均河流水文水平将从排水灌溉部获取。然后将数据作为专题图层输入ArcGIS软件进行进一步分析。随后将使用人工智能Phyton软件中的人工神经网络分析来获得钩端螺旋体病热点预测模型。
截至2022年11月,该研究获得了资金。数据收集、处理和分析于2022年12月开始,研究结果预计于2024年底发表。钩端螺旋体病的分布和聚集情况可能与降雨、陆地表面温度和河流水文水平等水文气候因素显著相关。
本研究将探索雪兰莪州钩端螺旋体病热点地区与水文气候因素之间的关联,并随后建立钩端螺旋体病预测模型。构建的预测模型可能用于设计和加强疾病预防的公共卫生举措。
国际注册报告识别号(IRRID):PRR1-10.2196/43712。