Suppr超能文献

基于水气候协变量预测钩端螺旋体病疫情:统计模型的比较研究。

Prediction of leptospirosis outbreaks by hydroclimatic covariates: a comparative study of statistical models.

机构信息

Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.

出版信息

Int J Biometeorol. 2022 Dec;66(12):2529-2540. doi: 10.1007/s00484-022-02378-z. Epub 2022 Oct 28.

Abstract

Leptospirosis, the infectious disease caused by a spirochete bacteria, is a major public health problem worldwide. In Argentina, some regions have climatic and geographical characteristics that favor the habitat of bacteria of the Leptospira genus, whose survival strongly depends on climatic factors, enhanced by climate change, which increase the problems associated with people's health. In order to have a method to predict leptospirosis cases, in this paper, five time series forecasting methods are compared: two parametric (autoregressive integrated moving average and an alternative one that allows covariates, ARIMA and ARIMAX, respectively), two nonparametric (Nadaraya-Watson Kernel estimator, one and two kernels versions, NW-1 K and NW-2 K), and one semiparametric (semi-functional partial linear regression, SFPLR) method. For this, the number of cases of leptospirosis registered from 2009 to 2020 in three important cities of northeastern Argentina is used, as well as hydroclimatic covariates related to the presence of cases. According to the obtained results, there is no method that improves considerably the rest and can be recommended as a unique tool for leptospirosis prediction. However, in general, the NW-2 K method gets a better performance. This work, in addition to using a long-term high-quality time series, enriches the area of applications of statistical models to epidemiological leptospirosis data by the incorporation of hydroclimatic variables, and it is recommended directing further efforts in this line of research, under the context of current climate change.

摘要

钩端螺旋体病是由螺旋体细菌引起的传染病,是全球主要的公共卫生问题。在阿根廷,一些地区具有有利于钩端螺旋体属细菌生存的气候和地理特征,其生存强烈依赖于气候因素,气候变化加剧了与人们健康相关的问题。为了能够预测钩端螺旋体病病例,本文比较了五种时间序列预测方法:两种参数方法(自回归综合移动平均和允许协变量的替代方法,ARIMA 和 ARIMAX)、两种非参数方法(Nadaraya-Watson 核估计,一个和两个核版本,NW-1 K 和 NW-2 K)和一种半参数方法(半函数部分线性回归,SFPLR)。为此,使用了阿根廷东北部三个重要城市 2009 年至 2020 年登记的钩端螺旋体病病例数,以及与病例存在相关的水文气候协变量。根据获得的结果,没有一种方法可以显著提高其他方法的性能,因此不能推荐作为钩端螺旋体病预测的唯一工具。然而,总体而言,NW-2 K 方法的性能更好。这项工作除了使用长期的高质量时间序列外,还通过纳入水文气候变量丰富了统计模型在流行病学钩端螺旋体病数据中的应用领域,建议在当前气候变化的背景下,在这一研究方向上进一步努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d63b/9614762/8adc057f8483/484_2022_2378_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验