College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang, China.
PLoS One. 2023 May 15;18(5):e0279504. doi: 10.1371/journal.pone.0279504. eCollection 2023.
The dominant spatial econometric model in spatial econometrics is the parametric form, while in the realistic context, the variables often do not satisfy the assumption of linearity and have nonlinear relationships with each other. In this paper, we introduce nonparametric terms into spatial econometric models and propose the MCMCINLA estimation method for varying coefficient spatial lag models. The empirical analysis is conducted with the socioeconomic data of mainland China from 2015 to 2020 to discuss the influencing factors and spatial and temporal distribution characteristics of China's economic development under the classical spatial lag model and the varying coefficient spatial lag model with population aging as a special covariate, respectively. The results show that with the gradual aging of the population, foreign trade will inhibit the development of regional economy to a certain extent, while urbanization process, resident income, real estate development and high-tech development will have a driving effect on economic growth, and high-tech development has the strongest mobilization on regional economic development. Compared with the classical spatial lag model, the varying coefficient spatial lag model can more fully exploit the information of variables in a more realistic context and derive the variable evolution process.
空间计量经济学中的主流空间计量模型是参数形式,而在现实情况下,变量通常不满足线性假设,并且彼此之间存在非线性关系。在本文中,我们将非参数项引入空间计量经济学模型,并提出了变系数空间滞后模型的 MCMCINLA 估计方法。利用中国大陆 2015 年至 2020 年的社会经济数据,分别在经典空间滞后模型和以人口老龄化为特殊协变量的变系数空间滞后模型下,讨论了中国经济发展的影响因素和时空分布特征。结果表明,随着人口老龄化的逐步加剧,对外贸易在一定程度上会抑制区域经济的发展,而城市化进程、居民收入、房地产开发和高科技发展对经济增长具有推动作用,其中高科技发展对区域经济发展的动员作用最强。与经典空间滞后模型相比,变系数空间滞后模型可以在更现实的背景下更充分地利用变量信息,并推导出变量的演变过程。