Suppr超能文献

MurE-MurF 细菌细胞壁生物合成复合物的结构和基因组排列。

Architecture and genomic arrangement of the MurE-MurF bacterial cell wall biosynthesis complex.

机构信息

Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil.

Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CEP Campinas, São Paulo 13083-862, Brazil.

出版信息

Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2219540120. doi: 10.1073/pnas.2219540120. Epub 2023 May 15.

Abstract

Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, genes are present in a single operon within the well conserved cluster, and in some cases, pairs of genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE-MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE-MurF chimera from reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE-MurF interacts with other Mur ligases via its central domains with Ks in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival.

摘要

肽聚糖 (PG) 是细菌细胞壁的主要成分,破坏其生物合成途径是几十年来成功的抗菌策略。PG 生物合成在细胞质中通过 Mur 酶的连续反应启动,这些酶已被证明可以形成多成员复合物。这一观点得到了以下观察结果的支持:在许多真细菌中, 基因存在于 簇内的单个操纵子中,在某些情况下, 对 基因融合以编码单个嵌合多肽。我们使用 >140 个细菌基因组进行了广泛的基因组分析,并在众多门中绘制了 Mur 嵌合体,其中变形菌携带的数量最多。最常见的嵌合体 MurE-MurF 存在直接相关或通过接头分离的形式。来自 的 MurE-MurF 嵌合体的晶体结构揭示了一种头对头、拉长的结构,由一个相互连接的疏水区支撑,稳定了两种蛋白质的位置。荧光偏振测定法表明,MurE-MurF 通过其中心结构域与其他 Mur 连接酶相互作用,其 Ks 在高纳摩尔范围内,支持细胞质中存在 Mur 复合物。这些数据支持了当编码蛋白旨在关联时,基因顺序受到更强的进化限制的观点,建立了 Mur 连接酶相互作用、复合物组装和基因组进化之间的联系,并揭示了在对细菌生存至关重要的途径中,蛋白质表达和稳定性的调控机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8baa/10214165/e186b10d6d0b/pnas.2219540120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验