Suppr超能文献

SchizoNET:一种基于稳健且准确的马根瑙-希尔时频分布的深度神经网络模型,用于利用脑电图信号检测精神分裂症。

SchizoNET: a robust and accurate Margenau-Hill time-frequency distribution based deep neural network model for schizophrenia detection using EEG signals.

作者信息

Khare Smith K, Bajaj Varun, Acharya U Rajendra

机构信息

Electrical and Computer Engineering Department, Aarhus University, Denmark.

Discipline of Electronics and Communication Engineering, Indian Institute of Information Technology, Design, and Manufacturing (IIITDM) Jabalpur, India.

出版信息

Physiol Meas. 2023 Mar 8;44(3). doi: 10.1088/1361-6579/acbc06.

Abstract

Schizophrenia (SZ) is a severe chronic illness characterized by delusions, cognitive dysfunctions, and hallucinations that impact feelings, behaviour, and thinking. Timely detection and treatment of SZ are necessary to avoid long-term consequences. Electroencephalogram (EEG) signals are one form of a biomarker that can reveal hidden changes in the brain during SZ. However, the EEG signals are non-stationary in nature with low amplitude. Therefore, extracting the hidden information from the EEG signals is challenging.The time-frequency domain is crucial for the automatic detection of SZ. Therefore, this paper presents the SchizoNET model combining the Margenau-Hill time-frequency distribution (MH-TFD) and convolutional neural network (CNN). The instantaneous information of EEG signals is captured in the time-frequency domain using MH-TFD. The time-frequency amplitude is converted to two-dimensional plots and fed to the developed CNN model.The SchizoNET model is developed using three different validation techniques, including holdout, five-fold cross-validation, and ten-fold cross-validation techniques using three separate public SZ datasets (Dataset 1, 2, and 3). The proposed model achieved an accuracy of 97.4%, 99.74%, and 96.35% on Dataset 1 (adolescents: 45 SZ and 39 HC subjects), Dataset 2 (adults: 14 SZ and 14 HC subjects), and Dataset 3 (adults: 49 SZ and 32 HC subjects), respectively. We have also evaluated six performance parameters and the area under the curve to evaluate the performance of our developed model.The SchizoNET is robust, effective, and accurate, as it performed better than the state-of-the-art techniques. To the best of our knowledge, this is the first work to explore three publicly available EEG datasets for the automated detection of SZ. Our SchizoNET model can help neurologists detect the SZ in various scenarios.

摘要

精神分裂症(SZ)是一种严重的慢性疾病,其特征为妄想、认知功能障碍和幻觉,这些症状会影响情感、行为和思维。及时检测和治疗精神分裂症对于避免长期后果至关重要。脑电图(EEG)信号是一种生物标志物形式,能够揭示精神分裂症期间大脑中隐藏的变化。然而,EEG信号本质上是非平稳的,且幅度较低。因此,从EEG信号中提取隐藏信息具有挑战性。时频域对于精神分裂症的自动检测至关重要。因此,本文提出了结合马根瑙 - 希尔时频分布(MH - TFD)和卷积神经网络(CNN)的SchizoNET模型。使用MH - TFD在时频域中捕获EEG信号的瞬时信息。时频幅度被转换为二维图并输入到所开发的CNN模型中。

SchizoNET模型是使用三种不同的验证技术开发的,包括留出法、五折交叉验证和十折交叉验证技术,使用三个独立的公开精神分裂症数据集(数据集1、2和3)。所提出的模型在数据集1(青少年:45名精神分裂症患者和39名健康对照受试者)、数据集2(成年人:14名精神分裂症患者和14名健康对照受试者)和数据集3(成年人:49名精神分裂症患者和32名健康对照受试者)上分别达到了97.4%、99.74%和96.35%的准确率。我们还评估了六个性能参数和曲线下面积以评估我们所开发模型的性能。

SchizoNET模型稳健、有效且准确,因为它的表现优于现有技术。据我们所知,这是第一项探索三个公开可用的EEG数据集用于精神分裂症自动检测的工作。我们的SchizoNET模型可以帮助神经科医生在各种场景中检测精神分裂症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验