Suppr超能文献

应用于电子皮肤的可拉伸且自我修复材料的发展。

The development of stretchable and self-repairing materials applied to electronic skin.

作者信息

Li Mei, Miao Chuanqi, Zou Muhua, Guo Jiahu, Wang Hongzhen, Gao Miao, Zhang Haichang, Deng Zhifeng

机构信息

National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China.

Key Laboratory of Rubber-Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.

出版信息

Front Chem. 2023 Apr 28;11:1198067. doi: 10.3389/fchem.2023.1198067. eCollection 2023.

Abstract

Flexible electronic devices play a key role in the fields of flexible batteries, electronic skins, and flexible displays, which have attracted more and more attention in the past few years. Among them, the application areas of electronic skin in new energy, artificial intelligence, and other high-tech applications are increasing. Semiconductors are an indispensable part of electronic skin components. The design of semiconductor structure not only needs to maintain good carrier mobility, but also considers extensibility and self-healing capability, which is always a challenging work. Though flexible electronic devices are important for our daily life, the research on this topic is quite rare in the past few years. In this work, the recently published work regarding to stretchable semiconductors as well as self-healing conductors are reviewed. In addition, the current shortcomings, future challenges as well as an outlook of this technology are discussed. The final goal is to outline a theoretical framework for the design of high-performance flexible electronic devices that can at the same time address their commercialization challenges.

摘要

柔性电子设备在柔性电池、电子皮肤和柔性显示器领域发挥着关键作用,在过去几年中受到了越来越多的关注。其中,电子皮肤在新能源、人工智能等高科技应用中的应用领域不断扩大。半导体是电子皮肤组件不可或缺的一部分。半导体结构的设计不仅需要保持良好的载流子迁移率,还需要考虑可扩展性和自修复能力,这一直是一项具有挑战性的工作。尽管柔性电子设备对我们的日常生活很重要,但在过去几年中关于这一主题的研究却相当少见。在这项工作中,对最近发表的关于可拉伸半导体以及自修复导体的工作进行了综述。此外,还讨论了这项技术目前的缺点、未来的挑战以及展望。最终目标是勾勒出一个高性能柔性电子设备设计的理论框架,同时应对其商业化挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f7/10175680/8a7904c1a34d/fchem-11-1198067-g001.jpg

相似文献

1
The development of stretchable and self-repairing materials applied to electronic skin.
Front Chem. 2023 Apr 28;11:1198067. doi: 10.3389/fchem.2023.1198067. eCollection 2023.
2
Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components.
Adv Mater. 2017 Jan;29(3). doi: 10.1002/adma.201603167. Epub 2016 Nov 14.
3
Hydrogen bonding-induced high-performance stretchable organic semiconductors: a Review.
Front Chem. 2023 Apr 21;11:1200644. doi: 10.3389/fchem.2023.1200644. eCollection 2023.
4
Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
Acc Chem Res. 2019 Feb 19;52(2):288-296. doi: 10.1021/acs.accounts.8b00497. Epub 2019 Jan 17.
5
Block Copolymer Elastomers for Stretchable Electronics.
Acc Chem Res. 2019 Jan 15;52(1):63-72. doi: 10.1021/acs.accounts.8b00488. Epub 2018 Dec 26.
6
Skin-Inspired Electronics: An Emerging Paradigm.
Acc Chem Res. 2018 May 15;51(5):1033-1045. doi: 10.1021/acs.accounts.8b00015. Epub 2018 Apr 25.
8
Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future.
Adv Mater. 2018 Nov;30(47):e1802560. doi: 10.1002/adma.201802560. Epub 2018 Aug 13.
9
Intrinsically stretchable and healable semiconducting polymer for organic transistors.
Nature. 2016 Nov 17;539(7629):411-415. doi: 10.1038/nature20102.
10
Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.
Chem Rev. 2017 May 10;117(9):6467-6499. doi: 10.1021/acs.chemrev.7b00003. Epub 2017 Mar 25.

本文引用的文献

1
Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors.
Nat Nanotechnol. 2022 Dec;17(12):1265-1271. doi: 10.1038/s41565-022-01246-6. Epub 2022 Nov 10.
2
Semiconducting Polymers for Neural Applications.
Chem Rev. 2022 Feb 23;122(4):4356-4396. doi: 10.1021/acs.chemrev.1c00685. Epub 2022 Jan 28.
4
A design strategy for high mobility stretchable polymer semiconductors.
Nat Commun. 2021 Jun 11;12(1):3572. doi: 10.1038/s41467-021-23798-2.
5
Bent-Shaped -Type Small-Molecule Organic Semiconductors: A Molecular Design Strategy for Next-Generation Practical Applications.
J Am Chem Soc. 2020 May 20;142(20):9083-9096. doi: 10.1021/jacs.9b10450. Epub 2020 Apr 30.
6
Investigating sources of inaccuracy in wearable optical heart rate sensors.
NPJ Digit Med. 2020 Feb 10;3:18. doi: 10.1038/s41746-020-0226-6. eCollection 2020.
7
Dynamic Ag-N Bond Enhanced Stretchable Conductor for Transparent and Self-Healing Electronic Skin.
ACS Appl Mater Interfaces. 2020 Jan 8;12(1):1486-1494. doi: 10.1021/acsami.9b17354. Epub 2019 Dec 12.
8
Accuracy of wearable heart rate monitors in cardiac rehabilitation.
Cardiovasc Diagn Ther. 2019 Jun;9(3):262-271. doi: 10.21037/cdt.2019.04.08.
9
Zigzag-Elongated Fused π-Electronic Core: A Molecular Design Strategy to Maximize Charge-Carrier Mobility.
Adv Sci (Weinh). 2017 Nov 15;5(1):1700317. doi: 10.1002/advs.201700317. eCollection 2018 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验