Suppr超能文献

爷爷:使用度和属性增强的生成网络采样应用于部分保密医疗保健网络的分析。

GRANDPA: GeneRAtive network sampling using degree and property augmentation applied to the analysis of partially confidential healthcare networks.

作者信息

Bobak Carly A, Zhao Yifan, Levy Joshua J, O'Malley A James

机构信息

Hanover, NH USA Department of Biomedical Data Science, Dartmouth College.

Hanover, NH USA The Dartmouth Institute for Health Policy and Clinical Practice, Dartmouth College.

出版信息

Appl Netw Sci. 2023;8(1):23. doi: 10.1007/s41109-023-00548-5. Epub 2023 May 11.

Abstract

Protecting medical privacy can create obstacles in the analysis and distribution of healthcare graphs and statistical inferences accompanying them. We pose a graph simulation model which generates networks using degree and property augmentation and provide a flexible R package that allows users to create graphs that preserve vertex attribute relationships and approximating the retention of topological properties observed in the original graph (e.g., community structure). We illustrate our proposed algorithm using a case study based on Zachary's karate network and a patient-sharing graph generated from Medicare claims data in 2019. In both cases, we find that community structure is preserved, and normalized root mean square error between cumulative distributions of the degrees across the generated and the original graphs is low (0.0508 and 0.0514 respectively).

摘要

保护医疗隐私可能会给医疗保健图及其相关统计推断的分析和传播带来障碍。我们提出了一种图模拟模型,该模型使用度和属性增强来生成网络,并提供了一个灵活的R包,允许用户创建能够保留顶点属性关系并近似保留原始图中观察到的拓扑属性(例如社区结构)的图。我们通过一个基于扎卡里空手道网络的案例研究和一个从2019年医疗保险理赔数据生成的患者共享图来说明我们提出的算法。在这两种情况下,我们发现社区结构得到了保留,并且生成图和原始图的度累积分布之间的归一化均方根误差很低(分别为0.0508和0.0514)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99c4/10175518/43fe68f93d68/41109_2023_548_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验