Suppr超能文献

通过改变电极间距和电极配置来提高肌电模式识别对电极移位的鲁棒性。

Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration.

机构信息

Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.

出版信息

IEEE Trans Biomed Eng. 2012 Mar;59(3):645-52. doi: 10.1109/TBME.2011.2177662. Epub 2011 Nov 29.

Abstract

Pattern recognition of myoelectric signals for prosthesis control has been extensively studied in research settings and is close to clinical implementation. These systems are capable of intuitively controlling the next generation of dexterous prosthetic hands. However, pattern recognition systems perform poorly in the presence of electrode shift, defined as movement of surface electrodes with respect to the underlying muscles. This paper focused on investigating the optimal interelectrode distance, channel configuration, and electromyography feature sets for myoelectric pattern recognition in the presence of electrode shift. Increasing interelectrode distance from 2 to 4 cm improved pattern recognition system performance in terms of classification error and controllability (p < 0.01). Additionally, for a constant number of channels, an electrode configuration that included electrodes oriented both longitudinally and perpendicularly with respect to muscle fibers improved robustness in the presence of electrode shift (p < 0.05). We investigated the effect of the number of recording channels with and without electrode shift and found that four to six channels were sufficient for pattern recognition control. Finally, we investigated different feature sets for pattern recognition control using a linear discriminant analysis classifier and found that an autoregressive set significantly (p < 0.01) reduced sensitivity to electrode shift compared to a traditional time-domain feature set.

摘要

肌电信号模式识别在研究环境中已得到广泛研究,并且接近临床应用。这些系统能够直观地控制下一代灵巧假肢手。然而,在电极移位的情况下,模式识别系统的性能会下降,电极移位定义为表面电极相对于下面的肌肉的移动。本文重点研究了在电极移位的情况下,最优的电极间距离、通道配置和肌电特征集,用于肌电模式识别。将电极间距离从 2 厘米增加到 4 厘米,可改善分类误差和可控制性方面的模式识别系统性能(p<0.01)。此外,对于固定数量的通道,包含相对于肌肉纤维纵向和垂直定向的电极的电极配置,提高了电极移位时的鲁棒性(p<0.05)。我们研究了有无电极移位时记录通道数量的影响,发现四到六个通道足以进行模式识别控制。最后,我们使用线性判别分析分类器研究了不同的特征集用于模式识别控制,发现自回归集与传统的时域特征集相比,显著降低了对电极移位的敏感性(p<0.01)。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验