Strang Andrew, Quirós-Cordero Victoria, Grégoire Pascal, Pla Sara, Fernández-Lázaro Fernando, Sastre-Santos Ángela, Silva-Acuña Carlos, Stavrinou Paul N, Stingelin Natalie
Department of Physics and Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.
Adv Mater. 2024 May;36(20):e2212056. doi: 10.1002/adma.202212056. Epub 2023 Jun 30.
Planar microcavities with strong light-matter coupling, monolithically processed fully from solution, consisting of two polymer-based distributed Bragg reflectors (DBRs) comprising alternating layers of a high-refractive-index titanium oxide hydrate/poly(vinyl alcohol) hybrid material and a low-refractive-index fluorinated polymer are presented. The DBRs enclose a perylene diimide derivative (b-PDI-1) film positioned at the antinode of the optical mode. Strong light-matter coupling is achieved in these structures at the target excitation of the b-PDI-1. Indeed, the energy-dispersion relation (energy vs in-plane wavevector or output angle) in reflectance and the group delay of transmitted light in the microcavities show a clear anti-crossing-an energy gap between two distinct exciton-polariton dispersion branches. The agreement between classical electrodynamic simulations of the microcavity response and the experimental data demonstrates that the entire microcavity stack can be controllably produced as designed. Promisingly, the refractive index of the inorganic/organic hybrid layers used in the microcavity DBRs can be precisely manipulated between values of 1.50 to 2.10. Hence, microcavities with a wide spectral range of optical modes might be designed and produced with straightforward coating methodologies, enabling fine-tuning of the energy and lifetime of the microcavities' optical modes to harness strong light-matter coupling in a wide variety of solution processable active materials.
本文展示了一种平面微腔,其具有强光-物质耦合特性,完全由溶液进行单片加工而成,由两个基于聚合物的分布式布拉格反射器(DBR)组成,这两个DBR由高折射率的水合二氧化钛/聚乙烯醇混合材料和低折射率的氟化聚合物的交替层构成。DBR包围着一个位于光学模波腹处的苝二酰亚胺衍生物(b-PDI-1)薄膜。在b-PDI-1的目标激发下,这些结构实现了强光-物质耦合。实际上,反射率中的能量色散关系(能量与面内波矢或输出角的关系)以及微腔中透射光的群延迟显示出明显的反交叉——两个不同的激子-极化激元色散分支之间存在能隙。微腔响应的经典电动力学模拟与实验数据之间的一致性表明,整个微腔堆栈可以按照设计可控地制造出来。有前景的是,微腔DBR中使用的无机/有机混合层的折射率可以在1.50至2.10的值之间精确调控。因此,可以用简单的镀膜方法设计和制造具有宽光谱范围光学模的微腔,从而能够对微腔光学模的能量和寿命进行微调,以便在各种可溶液加工的活性材料中利用强光-物质耦合。