Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
ACS Appl Mater Interfaces. 2023 May 31;15(21):25873-25883. doi: 10.1021/acsami.3c04022. Epub 2023 May 16.
Development of new materials capable of conducting protons in the absence of water is crucial for improving the performance, reducing the cost, and extending the operating conditions for proton exchange membrane fuel cells. We present detailed atomistic simulations showing that graphanol (hydroxylated graphane) will conduct protons anhydrously with very low diffusion barriers. We developed a deep learning potential (DP) for graphanol that has near-density functional theory accuracy but requires a very small fraction of the computational cost. We used our DP to calculate proton self-diffusion coefficients as a function of temperature, to estimate the overall barrier to proton diffusion, and to characterize the impact of thermal fluctuations as a function of system size. We propose and test a detailed mechanism for proton conduction on the surface of graphanol. We show that protons can rapidly hop along Grotthuss chains containing several hydroxyl groups aligned such that hydrogen bonds allow for conduction of protons forward and backward along the chain without hydroxyl group rotation. Long-range proton transport only takes place as new Grotthuss chains are formed by rotation of one or more hydroxyl groups in the chain. Thus, the overall diffusion barrier consists of a convolution of the intrinsic proton hopping barrier and the intrinsic hydroxyl rotation barrier. Our results provide a set of design rules for developing new anhydrous proton conducting membranes with even lower diffusion barriers.
开发能够在无水条件下传导质子的新型材料对于提高质子交换膜燃料电池的性能、降低成本和拓展工作条件至关重要。我们呈现了详细的原子模拟,表明氧化石墨醇(羟基化石墨烷)将在无水条件下以非常低的扩散势垒传导质子。我们为氧化石墨醇开发了一个深度学习势能(DP),它具有接近密度泛函理论的准确性,但所需的计算成本却非常小。我们使用 DP 来计算质子自扩散系数随温度的变化,以估计质子扩散的总势垒,并描述系统尺寸变化对热涨落的影响。我们提出并测试了一种在氧化石墨醇表面上进行质子传导的详细机制。我们表明,质子可以沿着含有几个羟基的 Grotthuss 链快速跳跃,这些羟基排列使得氢键允许质子沿链向前和向后传导,而无需羟基旋转。只有当链中的一个或多个羟基发生旋转形成新的 Grotthuss 链时,才会发生长程质子传输。因此,整体扩散势垒由质子固有跳跃势垒和羟基固有旋转势垒的卷积组成。我们的结果为开发具有更低扩散势垒的新型无水质子传导膜提供了一组设计规则。