Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.
Nuclear Waste Disposal Research & Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.
J Chem Theory Comput. 2023 Jun 13;19(11):3054-3062. doi: 10.1021/acs.jctc.2c01040. Epub 2023 May 16.
Diffusion properties of bulk fluids have been predicted using empirical expressions and machine learning (ML) models, suggesting that predictions of diffusion also should be possible for fluids in confined environments. The ability to quickly and accurately predict diffusion in porous materials would enable new discoveries and spur development in relevant technologies such as separations, catalysis, batteries, and subsurface applications. In this work, we apply artificial neural network (ANN) models to predict the simulated self-diffusion coefficients of real liquids in both bulk and pore environments. The training data sets were generated from molecular dynamics (MD) simulations of Lennard-Jones particles representing a diverse set of 14 molecules ranging from ammonia to dodecane over a range of liquid pressures and temperatures. Planar, cylindrical, and hexagonal pore models consisted of walls composed of carbon atoms. Our simple model for these liquids was primarily used to generate ANN training data, but the simulated self-diffusion coefficients of bulk liquids show excellent agreement with experimental diffusion coefficients. ANN models based on simple descriptors accurately reproduced the MD diffusion data for both bulk and confined liquids, including the trend of increased mobility in large pores relative to the corresponding bulk liquid.
已经使用经验表达式和机器学习 (ML) 模型来预测体相流体的扩散性质,这表明对于受限环境中的流体,也应该可以进行扩散预测。快速准确地预测多孔材料中的扩散将能够推动相关技术(如分离、催化、电池和地下应用)的新发现和发展。在这项工作中,我们应用人工神经网络 (ANN) 模型来预测真实液体在体相和孔隙环境中的模拟自扩散系数。训练数据集是通过代表从氨到十二烷的 14 种分子的 Lennard-Jones 粒子的分子动力学 (MD) 模拟生成的,涵盖了一系列液体压力和温度。平面、圆柱和六方孔模型由碳原子组成的壁组成。我们对这些液体的简单模型主要用于生成 ANN 训练数据,但体相液体的模拟自扩散系数与实验扩散系数表现出极好的一致性。基于简单描述符的 ANN 模型准确地再现了体相和受限液体的 MD 扩散数据,包括与相应体相液体相比,大孔中迁移率增加的趋势。