School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
Commun Biol. 2023 May 16;6(1):527. doi: 10.1038/s42003-023-04901-3.
Homologous recombination deficiency (HRD) renders cancer cells vulnerable to unrepaired double-strand breaks and is an important therapeutic target as exemplified by the clinical efficacy of poly ADP-ribose polymerase (PARP) inhibitors as well as the platinum chemotherapy drugs applied to HRD patients. However, it remains a challenge to predict HRD status precisely and economically. Copy number alteration (CNA), as a pervasive trait of human cancers, can be extracted from a variety of data sources, including whole genome sequencing (WGS), SNP array, and panel sequencing, and thus can be easily applied clinically. Here we systematically evaluate the predictive performance of various CNA features and signatures in HRD prediction and build a gradient boosting machine model (HRD) for pan-cancer HRD prediction based on these CNA features. CNA features BP10MB[1] (The number of breakpoints per 10MB of DNA is 1) and SS[ > 7 & <=8] (The log10-based size of segments is greater than 7 and less than or equal to 8) are identified as the most important features in HRD prediction. HRD suggests the biallelic inactivation of BRCA1, BRCA2, PALB2, RAD51C, RAD51D, and BARD1 as the major genetic basis for human HRD, and may also be applied to effectively validate the pathogenicity of BRCA1/2 variants of uncertain significance (VUS). Together, this study provides a robust tool for cost-effective HRD prediction and also demonstrates the applicability of CNA features and signatures in cancer precision medicine.
同源重组缺陷 (HRD) 使癌细胞容易受到未修复的双链断裂的影响,并且是一个重要的治疗靶点,例如聚 ADP-核糖聚合酶 (PARP) 抑制剂的临床疗效以及应用于 HRD 患者的铂类化疗药物。然而,精确和经济地预测 HRD 状态仍然是一个挑战。拷贝数改变 (CNA) 是人类癌症的普遍特征,可从各种数据源中提取,包括全基因组测序 (WGS)、SNP 阵列和面板测序,因此可轻松应用于临床。在这里,我们系统地评估了各种 CNA 特征和特征在 HRD 预测中的预测性能,并基于这些 CNA 特征构建了一个用于泛癌 HRD 预测的梯度提升机模型 (HRD)。CNA 特征 BP10MB[1](每 10MB DNA 的断点数量为 1)和 SS[ > 7 & <=8](基于对数的片段大小大于 7 且小于或等于 8)被确定为 HRD 预测中最重要的特征。HRD 提示 BRCA1、BRCA2、PALB2、RAD51C、RAD51D 和 BARD1 的双等位基因失活是人类 HRD 的主要遗传基础,也可用于有效地验证 BRCA1/2 意义不明的变异 (VUS) 的致病性。总之,这项研究为经济高效的 HRD 预测提供了一个强大的工具,并证明了 CNA 特征和特征在癌症精准医学中的适用性。