Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Neural Netw. 2023 Jul;164:464-475. doi: 10.1016/j.neunet.2023.04.034. Epub 2023 Apr 26.
Biohybrid circuits of interacting living and model neurons are an advantageous means to study neural dynamics and to assess the role of specific neuron and network properties in the nervous system. Hybrid networks are also a necessary step to build effective artificial intelligence and brain hybridization. In this work, we deal with the automatized online and offline adaptation, exploration and parameter mapping to achieve a target dynamics in hybrid circuits and, in particular, those that yield dynamical invariants between living and model neurons. We address dynamical invariants that form robust cycle-by-cycle relationships between the intervals that build neural sequences from such interaction. Our methodology first attains automated adaptation of model neurons to work in the same amplitude regime and time scale of living neurons. Then, we address the automatized exploration and mapping of the synapse parameter space that lead to a specific dynamical invariant target. Our approach uses multiple configurations and parallel computing from electrophysiological recordings of living neurons to build full mappings, and genetic algorithms to achieve an instance of the target dynamics for the hybrid circuit in a short time. We illustrate and validate such strategy in the context of the study of functional sequences in neural rhythms, which can be easily generalized for any variety of hybrid circuit configuration. This approach facilitates both the building of hybrid circuits and the accomplishment of their scientific goal.
生物混合电路中的相互作用的活神经元和模型神经元是研究神经动力学和评估特定神经元和网络特性在神经系统中的作用的有利手段。混合网络也是构建有效人工智能和大脑杂交的必要步骤。在这项工作中,我们处理自动化的在线和离线自适应、探索和参数映射,以实现混合电路中的目标动力学,特别是那些在活神经元和模型神经元之间产生动力学不变量的电路。我们解决了在构建神经序列的间隔之间形成稳健的周期到周期关系的动力学不变量。我们的方法首先实现模型神经元的自动适应,使其在与活神经元相同的幅度范围和时间尺度下工作。然后,我们解决了突触参数空间的自动化探索和映射问题,这些问题导致特定的动力学不变量目标。我们的方法使用来自活神经元的电生理记录的多个配置和并行计算来构建完整的映射,并使用遗传算法在短时间内为混合电路实现目标动力学的实例。我们在神经节律中功能序列研究的背景下说明了和验证了这种策略,它可以很容易地推广到任何混合电路配置的各种变体。这种方法既方便了混合电路的构建,又实现了它们的科学目标。