Suppr超能文献

基于肿瘤内和肿瘤周围的放射组学评估浸润性乳腺癌的淋巴管侵犯。

Intra- and Peritumoral Based Radiomics for Assessment of Lymphovascular Invasion in Invasive Breast Cancer.

机构信息

Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.

Department of Biomedical Engineering, China Medical University, Shenyang, China.

出版信息

J Magn Reson Imaging. 2024 Feb;59(2):613-625. doi: 10.1002/jmri.28776. Epub 2023 May 18.

Abstract

BACKGROUND

Radiomics has been applied for assessing lymphovascular invasion (LVI) in patients with breast cancer. However, associations between features from peritumoral regions and the LVI status were not investigated.

PURPOSE

To investigate the value of intra- and peritumoral radiomics for assessing LVI, and to develop a nomogram to assist in making treatment decisions.

STUDY TYPE

Retrospective.

POPULATION

Three hundred and sixteen patients were enrolled from two centers and divided into training (N = 165), internal validation (N = 83), and external validation (N = 68) cohorts.

FIELD STRENGTH/SEQUENCE: 1.5 T and 3.0 T/dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI).

ASSESSMENT

Radiomics features were extracted and selected based on intra- and peritumoral breast regions in two magnetic resonance imaging (MRI) sequences to create the multiparametric MRI combined radiomics signature (RS-DCE plus DWI). The clinical model was built with MRI-axillary lymph nodes (MRI ALN), MRI-reported peritumoral edema (MPE), and apparent diffusion coefficient (ADC). The nomogram was constructed with RS-DCE plus DWI, MRI ALN, MPE, and ADC.

STATISTICAL TESTS

Intra- and interclass correlation coefficient analysis, Mann-Whitney U test, and least absolute shrinkage and selection operator regression were used for feature selection. Receiver operating characteristic and decision curve analyses were applied to compare performance of the RS-DCE plus DWI, clinical model, and nomogram.

RESULTS

A total of 10 features were found to be associated with LVI, 3 from intra- and 7 from peritumoral areas. The nomogram showed good performance in the training (AUCs, nomogram vs. clinical model vs. RS-DCE plus DWI, 0.884 vs. 0.695 vs. 0.870), internal validation (AUCs, nomogram vs. clinical model vs. RS-DCE plus DWI, 0.813 vs. 0.695 vs. 0.794), and external validation (AUCs, nomogram vs. clinical model vs. RS-DCE plus DWI, 0.862 vs. 0.601 vs. 0.849) cohorts.

DATA CONCLUSION

The constructed preoperative nomogram might effectively assess LVI.

LEVEL OF EVIDENCE

3 TECHNICAL EFFICACY: Stage 2.

摘要

背景

放射组学已被应用于评估乳腺癌患者的淋巴管侵犯(LVI)。然而,瘤周区域特征与 LVI 状态之间的相关性尚未得到研究。

目的

探讨瘤内和瘤周放射组学特征在评估 LVI 中的价值,并建立列线图以辅助治疗决策。

研究类型

回顾性。

人群

本研究纳入了来自两个中心的 316 名患者,并将其分为训练集(N=165)、内部验证集(N=83)和外部验证集(N=68)。

磁场强度/序列:1.5T 和 3.0T/动态对比增强(DCE)和弥散加权成像(DWI)。

评估

在两个磁共振成像(MRI)序列中,基于瘤内和瘤周乳腺区域提取和选择放射组学特征,以创建多参数 MRI 联合放射组学特征(DCE 加 DWI)。使用 MRI-腋窝淋巴结(MRI ALN)、MRI 报告的瘤周水肿(MPE)和表观扩散系数(ADC)建立临床模型。使用 RS-DCE 加 DWI、MRI ALN、MPE 和 ADC 构建列线图。

统计学检验

使用组内和组间相关系数分析、Mann-Whitney U 检验和最小绝对值收缩和选择算子回归进行特征选择。应用接受者操作特征和决策曲线分析比较 RS-DCE 加 DWI、临床模型和列线图的性能。

结果

共发现与 LVI 相关的 10 个特征,其中 3 个来自瘤内区域,7 个来自瘤周区域。列线图在训练集(AUC,列线图与临床模型与 RS-DCE 加 DWI,0.884 与 0.695 与 0.870)、内部验证集(AUC,列线图与临床模型与 RS-DCE 加 DWI,0.813 与 0.695 与 0.794)和外部验证集(AUC,列线图与临床模型与 RS-DCE 加 DWI,0.862 与 0.601 与 0.849)中均表现出良好的性能。

数据结论

构建的术前列线图可能能够有效地评估 LVI。

证据水平

3 级技术功效:2 级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验