Suppr超能文献

从相关陈述中推断因果关系。

Causal implicatures from correlational statements.

机构信息

Department of Psychology, Harvard University, Cambridge, MA, United States of America.

出版信息

PLoS One. 2023 May 18;18(5):e0286067. doi: 10.1371/journal.pone.0286067. eCollection 2023.

Abstract

Correlation does not imply causation, but this does not necessarily stop people from drawing causal inferences from correlational statements. We show that people do in fact infer causality from statements of association, under minimal conditions. In Study 1, participants interpreted statements of the form "X is associated with Y" to imply that Y causes X. In Studies 2 and 3, participants interpreted statements of the form "X is associated with an increased risk of Y" to imply that X causes Y. Thus, even the most orthodox correlational language can give rise to causal inferences.

摘要

相关关系并不意味着因果关系,但这并不能阻止人们从相关陈述中得出因果推断。我们表明,在最小条件下,人们实际上确实会从关联陈述中推断出因果关系。在研究 1 中,参与者将“X 与 Y 相关”的陈述解释为 Y 导致 X。在研究 2 和 3 中,参与者将“X 与 Y 的风险增加相关”的陈述解释为 X 导致 Y。因此,即使是最正统的相关语言也可能导致因果推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e3/10194916/80670023e06c/pone.0286067.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验