Saccaram Chandrodhay, Simonin Marie, Boutet Stéphanie, Brosse Céline, Peng Shuang, François Tracy, Collet Boris, Perreau François, Sourdeval Delphine, Marais Coralie, Barret Matthieu, Rajjou Loïc, Corso Massimiliano
Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France.
IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, Beaucouzé, France.
mSystems. 2025 Aug 19;10(8):e0070725. doi: 10.1128/msystems.00707-25. Epub 2025 Jul 31.
The spermosphere, the dynamic interface surrounding germinating seeds, is shaped by the intricate interplay between seed-exuded natural compounds and seed-associated microbial communities. In this work, we provide the first comprehensive metabolomic and microbiome characterization of common bean () spermosphere of eight genotypes produced in two contrasted production regions. Through an integrated approach, we explored the metabolomic and microbiota composition in the spermosphere of germinating common bean seeds and elucidated their environmental and genotype regulation. We detected and analyzed 2,467 metabolite features (Mf) through untargeted metabolomics categorized into fourteen metabolic categories, highlighting the prevalence of amino acids, flavonoids, and terpenoids. Genotype was the key factor influencing the chemical composition of the spermosphere. Furthermore, we identified 19 bacterial families and 23 fungal families inhabiting the spermosphere, with both genotype and seed production location exerting varying degrees of influence on microbial community composition. Through a multiscale integrated approach, we revealed specific associations between metabolites and microorganisms, such as negative correlation between flavonoids and spp., emphasizing the genotype-dependent nature of these interactions. This comprehensive investigation sheds light on the mechanisms underlying seed germination and the complex interactions between plant genotypes, seed exudates, environmental conditions, and microbial communities in the spermosphere. These findings provide a framework for developing innovative strategies to promote seed health and sustainable crop production.
The spermosphere, the dynamic interface around germinating seeds, is shaped by the intricate interplay between seed-exuded compounds and microbial communities. Despite the importance of these interactions for eventual seedling emergence and health, little knowledge is available on the subject. We are the first to comprehensively analyze the chemical and microbial diversity of the spermosphere of (common bean). We identified thousands of primary and specialized metabolites, highlighting their diversity but largely unknown roles in germinating seed-environment interactions. We revealed significant genotype-driven differences in the chemical composition as well as the influence of both genotype and seed production location on microbial community structure in the spermosphere. Our metabolome-microbiome integrative analysis suggests that common bean shapes the spermosphere microbiome through specific seed exudates. This research advances our understanding of the metabolic capabilities and ecological roles of seed microbiota within the spermosphere, contributing to our understanding of seed health and vigor.
精子圈是围绕正在萌发种子的动态界面,由种子分泌的天然化合物与种子相关微生物群落之间复杂的相互作用所塑造。在这项研究中,我们首次对两个对比产区生产的八种基因型普通菜豆(Phaseolus vulgaris)的精子圈进行了全面的代谢组学和微生物组特征分析。通过综合方法,我们探究了萌发普通菜豆种子精子圈中的代谢组和微生物群组成,并阐明了它们的环境和基因型调控。我们通过非靶向代谢组学检测并分析了2467个代谢物特征(Mf),这些代谢物被分为14个代谢类别,突出了氨基酸、黄酮类化合物和萜类化合物的普遍性。基因型是影响精子圈化学成分的关键因素。此外,我们鉴定出了栖息在精子圈中的19个细菌科和23个真菌科,基因型和种子生产地点对微生物群落组成均有不同程度的影响。通过多尺度综合方法,我们揭示了代谢物与微生物之间的特定关联,例如黄酮类化合物与某些物种之间的负相关,强调了这些相互作用的基因型依赖性。这项全面的研究揭示了种子萌发的潜在机制以及植物基因型、种子分泌物、环境条件和精子圈中微生物群落之间的复杂相互作用。这些发现为制定促进种子健康和可持续作物生产的创新策略提供了框架。
精子圈是围绕正在萌发种子的动态界面,由种子分泌的化合物与微生物群落之间复杂的相互作用所塑造。尽管这些相互作用对最终的幼苗出土和健康至关重要,但关于这一主题的知识却很少。我们是第一个全面分析普通菜豆(Phaseolus vulgaris)精子圈化学和微生物多样性的研究团队。我们鉴定出了数千种初级和特殊代谢物,突出了它们的多样性,但它们在种子萌发与环境相互作用中的作用大多未知。我们揭示了精子圈化学成分中显著的基因型驱动差异,以及基因型和种子生产地点对微生物群落结构的影响。我们的代谢组-微生物组综合分析表明,普通菜豆通过特定的种子分泌物塑造精子圈微生物组。这项研究推进了我们对精子圈中种子微生物群代谢能力和生态作用的理解,有助于我们理解种子健康和活力。