Institute of Science and Technology Austria, am Campus 1, 3400 Klosterneuburg, Austria.
Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1040 Vienna, Austria.
Science. 2023 May 19;380(6646):718-721. doi: 10.1126/science.adg3812. Epub 2023 May 18.
Quantum entanglement is a key resource in currently developed quantum technologies. Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new functionalities, but this has been hindered by an energy scale mismatch of >10 and the resulting mutually imposed loss and noise. In this work, we created and verified entanglement between microwave and optical fields in a millikelvin environment. Using an optically pulsed superconducting electro-optical device, we show entanglement between propagating microwave and optical fields in the continuous variable domain. This achievement not only paves the way for entanglement between superconducting circuits and telecom wavelength light, but also has wide-ranging implications for hybrid quantum networks in the context of modularization, scaling, sensing, and cross-platform verification.
量子纠缠是当前发展的量子技术中的关键资源。在超导微波电路和光学或原子系统之间共享这种脆弱的性质将实现新的功能,但这受到>10 的能量尺度不匹配以及由此产生的相互施加的损耗和噪声的阻碍。在这项工作中,我们在毫开尔文环境中创建并验证了微波和光场之间的纠缠。使用光学脉冲超导电光器件,我们在连续变量域中展示了传播微波和光场之间的纠缠。这一成就不仅为超导电路与电信波长光之间的纠缠铺平了道路,而且对于模块化、扩展、传感和跨平台验证背景下的混合量子网络具有广泛的意义。