Suppr超能文献

利用硅光子纳米机械界面转换微波光子和电信光子。

Converting microwave and telecom photons with a silicon photonic nanomechanical interface.

作者信息

Arnold G, Wulf M, Barzanjeh S, Redchenko E S, Rueda A, Hease W J, Hassani F, Fink J M

机构信息

Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.

Institute for Quantum Science and Technology (IQST), University of Calgary, Calgary, AB, Canada.

出版信息

Nat Commun. 2020 Sep 8;11(1):4460. doi: 10.1038/s41467-020-18269-z.

Abstract

Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer interfacing the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135%) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams reaching a V as low as 16 μV for sub-nanowatt pump powers. Without the associated optomechanical gain, we achieve a total (internal) pure conversion efficiency of up to 0.019% (1.6%), relevant for future noise-free operation on this qubit-compatible platform.

摘要

实用的量子网络需要低损耗且抗噪声的光学互连以及用于纠缠纯化和分布式量子计算的非高斯资源。后者可由超导电路提供,但现有的连接微波和光学领域的解决方案要么缺乏可扩展性,要么效率低下,而且在大多数情况下,转换噪声是未知的。在这项工作中,我们利用硅光子学、腔光力学和超导电路的独特优势,展示了一种完全集成的相干换能器,它连接微波X波段和电信S波段,在毫开尔文温度下,总(内部)双向转换效率为1.2%(135%)。这种耦合仅依赖于由两个硅纳米梁的飞米级运动介导的辐射压力相互作用,对于亚纳瓦泵浦功率,其达到了低至16 μV的V值。在没有相关光机械增益的情况下,我们实现了高达0.019%(1.6%)的总(内部)纯转换效率,这对于未来在这个与量子比特兼容的平台上实现无噪声操作具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93c0/7479601/af2f2cddcb99/41467_2020_18269_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验