Suppr超能文献

为微波量子处理器构建光子链路。

Building photonic links for microwave quantum processors.

作者信息

Zhao Han

机构信息

Department of Physics, University of Central Florida, Orlando, FL, 32816, USA.

出版信息

Nanophotonics. 2025 Feb 7;14(11):1895-1906. doi: 10.1515/nanoph-2024-0599. eCollection 2025 Jun.

Abstract

Optical photons play unique role in transmitting information over long distances. Photonic links by the optical fiber networks compose the backbone of today's global internet. Such fiber optics can also provide the most cost-effective quantum channels to distribute quantum information across distant stationary nodes in future large-scale quantum networks. This prospect motivates the recent emerging efforts in developing microwave-optical quantum transduction technology to interconnect microwave quantum processors. Various frequency conversion approaches are investigated to efficiently bridge the enormous electromagnetic frequency gap while preserving quantum coherence. Nonetheless, high-fidelity entanglement generation between remote quantum processing units has remained out of reach to date. Here, we summarize the state-of-the-art progresses in quantum transducer engineering and provide the perspectives on the key challenges and opportunities toward optically heralded quantum entanglement distributions.

摘要

光学光子在长距离信息传输中发挥着独特作用。光纤网络构成的光子链路是当今全球互联网的骨干。这种光纤还能提供最具成本效益的量子通道,以便在未来大规模量子网络中跨远距离固定节点分发量子信息。这一前景推动了近期在开发微波 - 光量子转换技术以互连微波量子处理器方面的努力。人们研究了各种频率转换方法,以在保持量子相干性的同时有效弥合巨大的电磁频率差距。尽管如此,远程量子处理单元之间的高保真纠缠生成至今仍遥不可及。在此,我们总结了量子换能器工程的最新进展,并就光学预示量子纠缠分布面临的关键挑战和机遇给出展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e979/12133253/6363b1a88958/j_nanoph-2024-0599_fig_001.jpg

相似文献

1
Building photonic links for microwave quantum processors.
Nanophotonics. 2025 Feb 7;14(11):1895-1906. doi: 10.1515/nanoph-2024-0599. eCollection 2025 Jun.
2
Entangling single atoms over 33 km telecom fibre.
Nature. 2022 Jul;607(7917):69-73. doi: 10.1038/s41586-022-04764-4. Epub 2022 Jul 6.
3
Metropolitan-scale heralded entanglement of solid-state qubits.
Sci Adv. 2024 Nov;10(44):eadp6442. doi: 10.1126/sciadv.adp6442. Epub 2024 Oct 30.
5
Qubit teleportation between non-neighbouring nodes in a quantum network.
Nature. 2022 May;605(7911):663-668. doi: 10.1038/s41586-022-04697-y. Epub 2022 May 25.
7
Long-Distance Distribution of Atom-Photon Entanglement at Telecom Wavelength.
Phys Rev Lett. 2020 Jan 10;124(1):010510. doi: 10.1103/PhysRevLett.124.010510.
8
An integrated microwave-to-optics interface for scalable quantum computing.
Nat Nanotechnol. 2024 Feb;19(2):166-172. doi: 10.1038/s41565-023-01515-y. Epub 2023 Oct 5.
9
Entanglement of two quantum memories via fibres over dozens of kilometres.
Nature. 2020 Feb;578(7794):240-245. doi: 10.1038/s41586-020-1976-7. Epub 2020 Feb 12.
10
Experimental entanglement of 25 individually accessible atomic quantum interfaces.
Sci Adv. 2018 Apr 20;4(4):eaar3931. doi: 10.1126/sciadv.aar3931. eCollection 2018 Apr.

引用本文的文献

1
Quantum light: creation, integration, and applications.
Nanophotonics. 2025 May 22;14(11):1683-1686. doi: 10.1515/nanoph-2025-0180. eCollection 2025 Jun.

本文引用的文献

1
All-optical superconducting qubit readout.
Nat Phys. 2025;21(3):393-400. doi: 10.1038/s41567-024-02741-4. Epub 2025 Feb 11.
2
Distributed quantum computing across an optical network link.
Nature. 2025 Feb;638(8050):383-388. doi: 10.1038/s41586-024-08404-x. Epub 2025 Feb 5.
3
Indistinguishable photons from an artificial atom in silicon photonics.
Nat Commun. 2024 Aug 13;15(1):6920. doi: 10.1038/s41467-024-51265-1.
4
Entanglement of nanophotonic quantum memory nodes in a telecom network.
Nature. 2024 May;629(8012):573-578. doi: 10.1038/s41586-024-07252-z. Epub 2024 May 15.
5
Cavity-coupled telecom atomic source in silicon.
Nat Commun. 2024 Mar 15;15(1):2350. doi: 10.1038/s41467-024-46643-8.
6
Low-loss adiabatic fiber-optic coupler for cryogenic photonics.
Appl Opt. 2023 Dec 1;62(34):9036-9040. doi: 10.1364/AO.502604.
7
An integrated microwave-to-optics interface for scalable quantum computing.
Nat Nanotechnol. 2024 Feb;19(2):166-172. doi: 10.1038/s41565-023-01515-y. Epub 2023 Oct 5.
8
Indistinguishable telecom band photons from a single Er ion in the solid state.
Nature. 2023 Aug;620(7976):977-981. doi: 10.1038/s41586-023-06281-4. Epub 2023 Aug 30.
9
Telecom-band-integrated multimode photonic quantum memory.
Sci Adv. 2023 Jul 14;9(28):eadf4587. doi: 10.1126/sciadv.adf4587.
10
Entangling microwaves with light.
Science. 2023 May 19;380(6646):718-721. doi: 10.1126/science.adg3812. Epub 2023 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验