Zhao Han
Department of Physics, University of Central Florida, Orlando, FL, 32816, USA.
Nanophotonics. 2025 Feb 7;14(11):1895-1906. doi: 10.1515/nanoph-2024-0599. eCollection 2025 Jun.
Optical photons play unique role in transmitting information over long distances. Photonic links by the optical fiber networks compose the backbone of today's global internet. Such fiber optics can also provide the most cost-effective quantum channels to distribute quantum information across distant stationary nodes in future large-scale quantum networks. This prospect motivates the recent emerging efforts in developing microwave-optical quantum transduction technology to interconnect microwave quantum processors. Various frequency conversion approaches are investigated to efficiently bridge the enormous electromagnetic frequency gap while preserving quantum coherence. Nonetheless, high-fidelity entanglement generation between remote quantum processing units has remained out of reach to date. Here, we summarize the state-of-the-art progresses in quantum transducer engineering and provide the perspectives on the key challenges and opportunities toward optically heralded quantum entanglement distributions.
光学光子在长距离信息传输中发挥着独特作用。光纤网络构成的光子链路是当今全球互联网的骨干。这种光纤还能提供最具成本效益的量子通道,以便在未来大规模量子网络中跨远距离固定节点分发量子信息。这一前景推动了近期在开发微波 - 光量子转换技术以互连微波量子处理器方面的努力。人们研究了各种频率转换方法,以在保持量子相干性的同时有效弥合巨大的电磁频率差距。尽管如此,远程量子处理单元之间的高保真纠缠生成至今仍遥不可及。在此,我们总结了量子换能器工程的最新进展,并就光学预示量子纠缠分布面临的关键挑战和机遇给出展望。