Suppr超能文献

基于热致电流水凝胶的仿生多模态增强体感受体

Bionic Multimodal Augmented Somatosensory Receptor Enabled by Thermogalvanic Hydrogel.

作者信息

Li Ning, Wang Zhaosu, Niu Yu, Li Yu, Wen Suyi, Zhang Hulin, Lin Zong-Hong

机构信息

College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.

College of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.

出版信息

Adv Sci (Weinh). 2025 Jun 29:e05873. doi: 10.1002/advs.202505873.

Abstract

The emergence of an e-skin receptor is an optimal solution for restoring the hand function of patients with sensation disorder, while constructing an e-skin receptor with high sensitivity, self-supervised capability, and open-environmental stability remains challenging. Here, inspired by the human skin perception mechanism, an ultrasensitive self-powered multimodal fingertip receptor that integrates thermogalvanic hydrogels as active mechanoreceptors and thermoreceptors for entropy-stabilized material fingerprint perception is proposed. A micropatterned and gradient structure strategy is introduced to improve the sensitivity to 53.6 kPa with a low detection limit of 1.9 Pa. By exploiting static thermovoltage and dynamic differential signals to visualize the unsteady interfacial heat conduction, different materials can be determined in 80 ms based on the fast and slow adaptive sensations of the receptor. The self-supervised thermovoltage compensation is realized by self-decoupling contact pressure and thermal contact coefficients of materials, accommodating variations in applied forces. Benefiting from the robust interfacial heat transfer process and thermoelectric conversion, the tactile perception mechanism demonstrates universality under various external surroundings and contact conditions. With the assistance of deep learning, the fingertip receptor can function as an augmented somatosensory receptor to accurately perceive cutaneous cues of objects with an accuracy of 95.5%, which provides the potential of intelligent haptic perception to human-machine interfaces and prosthetics.

摘要

电子皮肤感受器的出现是恢复感觉障碍患者手部功能的最佳解决方案,然而构建具有高灵敏度、自监督能力和开放环境稳定性的电子皮肤感受器仍然具有挑战性。在此,受人类皮肤感知机制的启发,提出了一种超灵敏自供电多模态指尖感受器,该感受器集成了热电流水凝胶作为用于熵稳定材料指纹感知的有源机械感受器和热感受器。引入微图案化和梯度结构策略,将灵敏度提高到53.6 kPa,检测下限低至1.9 Pa。通过利用静态热电压和动态差分信号来可视化不稳定的界面热传导,基于感受器的快速和慢速自适应感觉,可以在80毫秒内确定不同的材料。通过自解耦材料的接触压力和热接触系数,实现了自监督热电压补偿,以适应施加力的变化。受益于强大的界面传热过程和热电转换,触觉感知机制在各种外部环境和接触条件下都具有通用性。在深度学习的辅助下,指尖感受器可以作为增强的体感感受器,以95.5%的准确率准确感知物体的皮肤线索,这为人类-机器接口和假肢提供了智能触觉感知的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验