Suppr超能文献

用于整合社交网络和人口分析的模拟数据集的生成与应用。

Generation and applications of simulated datasets to integrate social network and demographic analyses.

作者信息

Silk Matthew J, Gimenez Olivier

机构信息

CEFE, Univ Montpellier, CNRS, EPHE, IRD Montpellier France.

出版信息

Ecol Evol. 2023 May 15;13(5):e9871. doi: 10.1002/ece3.9871. eCollection 2023 May.

Abstract

Social networks are tied to population dynamics; interactions are driven by population density and demographic structure, while social relationships can be key determinants of survival and reproductive success. However, difficulties integrating models used in demography and network analysis have limited research at this interface. We introduce the R package genNetDem for simulating integrated network-demographic datasets. It can be used to create longitudinal social network and/or capture-recapture datasets with known properties. It incorporates the ability to generate populations and their social networks, generate grouping events using these networks, simulate social network effects on individual survival, and flexibly sample these longitudinal datasets of social associations. By generating co-capture data with known statistical relationships, it provides functionality for methodological research. We demonstrate its use with case studies testing how imputation and sampling design influence the success of adding network traits to conventional Cormack-Jolly-Seber (CJS) models. We show that incorporating social network effects into CJS models generates qualitatively accurate results, but with downward-biased parameter estimates when network position influences survival. Biases are greater when fewer interactions are sampled or fewer individuals observed in each interaction. While our results indicate the potential of incorporating social effects within demographic models, they show that imputing missing network measures alone is insufficient to accurately estimate social effects on survival, pointing to the importance of incorporating network imputation approaches. genNetDem provides a flexible tool to aid these methodological advancements and help researchers testing other sampling considerations in social network studies.

摘要

社会网络与种群动态相关;相互作用由种群密度和人口结构驱动,而社会关系可能是生存和繁殖成功的关键决定因素。然而,整合人口统计学和网络分析中使用的模型存在困难,限制了这一交叉领域的研究。我们引入了R包genNetDem,用于模拟整合的网络人口数据集。它可用于创建具有已知属性的纵向社会网络和/或捕获再捕获数据集。它具备生成种群及其社会网络、利用这些网络生成分组事件、模拟社会网络对个体生存的影响以及灵活抽样这些社会关联纵向数据集的能力。通过生成具有已知统计关系的共同捕获数据,它为方法学研究提供了功能。我们通过案例研究展示了它的用途,测试了插补和抽样设计如何影响将网络特征添加到传统的Cormack-Jolly-Seber(CJS)模型中的成功率。我们表明,将社会网络效应纳入CJS模型会产生定性准确的结果,但当网络位置影响生存时,参数估计会有向下偏差。当抽样的相互作用较少或每次相互作用中观察到的个体较少时,偏差会更大。虽然我们的结果表明了在人口模型中纳入社会效应的潜力,但它们表明仅插补缺失的网络测量值不足以准确估计社会对生存的影响,这指出了纳入网络插补方法的重要性。genNetDem提供了一个灵活的工具,以帮助这些方法学的进步,并帮助研究人员测试社会网络研究中的其他抽样考虑因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a19/10185435/1c648956c13c/ECE3-13-e9871-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验