Suppr超能文献

基于 U-Nets 的前列腺分割任务的研究与基准测试。

Investigation and benchmarking of U-Nets on prostate segmentation tasks.

机构信息

Cyber-Physical Systems Division, Institute of Computer Engineering, Faculty of Informatics, Technische Universität Wien, Vienna, 1040, Austria.

Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Freiburg, 79106, Germany; Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, 79106, Germany.

出版信息

Comput Med Imaging Graph. 2023 Jul;107:102241. doi: 10.1016/j.compmedimag.2023.102241. Epub 2023 May 12.

Abstract

In healthcare, a growing number of physicians and support staff are striving to facilitate personalized radiotherapy regimens for patients with prostate cancer. This is because individual patient biology is unique, and employing a single approach for all is inefficient. A crucial step for customizing radiotherapy planning and gaining fundamental information about the disease, is the identification and delineation of targeted structures. However, accurate biomedical image segmentation is time-consuming, requires considerable experience and is prone to observer variability. In the past decade, the use of deep learning models has significantly increased in the field of medical image segmentation. At present, a vast number of anatomical structures can be demarcated on a clinician's level with deep learning models. These models would not only unload work, but they can offer unbiased characterization of the disease. The main architectures used in segmentation are the U-Net and its variants, that exhibit outstanding performances. However, reproducing results or directly comparing methods is often limited by closed source of data and the large heterogeneity among medical images. With this in mind, our intention is to provide a reliable source for assessing deep learning models. As an example, we chose the challenging task of delineating the prostate gland in multi-modal images. First, this paper provides a comprehensive review of current state-of-the-art convolutional neural networks for 3D prostate segmentation. Second, utilizing public and in-house CT and MR datasets of varying properties, we created a framework for an objective comparison of automatic prostate segmentation algorithms. The framework was used for rigorous evaluations of the models, highlighting their strengths and weaknesses.

摘要

在医疗保健领域,越来越多的医生和支持人员努力为前列腺癌患者制定个性化的放射治疗方案。这是因为每个患者的生物学特征都是独特的,对所有患者采用单一方法效率低下。为了定制放射治疗计划并获得有关疾病的基本信息,关键步骤是识别和描绘目标结构。然而,准确的生物医学图像分割既耗时,又需要丰富的经验,并且容易受到观察者变异性的影响。在过去的十年中,深度学习模型在医学图像分割领域的应用显著增加。目前,深度学习模型可以在临床医生的水平上对大量的解剖结构进行划分。这些模型不仅可以减轻工作负担,还可以提供对疾病的无偏特征描述。在分割中使用的主要架构是 U-Net 及其变体,它们表现出出色的性能。然而,由于数据来源封闭以及医学图像之间存在很大的异质性,通常很难重现结果或直接比较方法。考虑到这一点,我们的目的是提供一个可靠的资源来评估深度学习模型。例如,我们选择了在多模态图像中勾画前列腺这一具有挑战性的任务。本文首先全面回顾了当前用于 3D 前列腺分割的最先进的卷积神经网络。其次,利用具有不同特性的公共和内部 CT 和 MR 数据集,我们创建了一个用于自动前列腺分割算法的客观比较框架。该框架用于对模型进行严格评估,突出了它们的优势和劣势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验