Telfer School of Management, University of Ottawa, Ottawa, ON, Canada.
Center for BioMedical Informatics Research, Stanford University, Stanford, CA 94305, USA.
J Biomed Inform. 2023 Jun;142:104395. doi: 10.1016/j.jbi.2023.104395. Epub 2023 May 16.
The study has dual objectives. Our first objective (1) is to develop a community-of-practice-based evaluation methodology for knowledge-intensive computational methods. We target a whitebox analysis of the computational methods to gain insight on their functional features and inner workings. In more detail, we aim to answer evaluation questions on (i) support offered by computational methods for functional features within the application domain; and (ii) in-depth characterizations of the underlying computational processes, models, data and knowledge of the computational methods. Our second objective (2) involves applying the evaluation methodology to answer questions (i) and (ii) for knowledge-intensive clinical decision support (CDS) methods, which operationalize clinical knowledge as computer interpretable guidelines (CIG); we focus on multimorbidity CIG-based clinical decision support (MGCDS) methods that target multimorbidity treatment plans.
Our methodology directly involves the research community of practice in (a) identifying functional features within the application domain; (b) defining exemplar case studies covering these features; and (c) solving the case studies using their developed computational methods-research groups detail their solutions and functional feature support in solution reports. Next, the study authors (d) perform a qualitative analysis of the solution reports, identifying and characterizing common themes (or dimensions) among the computational methods. This methodology is well suited to perform whitebox analysis, as it directly involves the respective developers in studying inner workings and feature support of computational methods. Moreover, the established evaluation parameters (e.g., features, case studies, themes) constitute a re-usable benchmark framework, which can be used to evaluate new computational methods as they are developed. We applied our community-of-practice-based evaluation methodology on MGCDS methods.
Six research groups submitted comprehensive solution reports for the exemplar case studies. Solutions for two of these case studies were reported by all groups. We identified four evaluation dimensions: detection of adverse interactions, management strategy representation, implementation paradigms, and human-in-the-loop support. Based on our whitebox analysis, we present answers to the evaluation questions (i) and (ii) for MGCDS methods.
The proposed evaluation methodology includes features of illuminative and comparison-based approaches; focusing on understanding rather than judging/scoring or identifying gaps in current methods. It involves answering evaluation questions with direct involvement of the research community of practice, who participate in setting up evaluation parameters and solving exemplar case studies. Our methodology was successfully applied to evaluate six MGCDS knowledge-intensive computational methods. We established that, while the evaluated methods provide a multifaceted set of solutions with different benefits and drawbacks, no single MGCDS method currently provides a comprehensive solution for MGCDS.
We posit that our evaluation methodology, applied here to gain new insights into MGCDS, can be used to assess other types of knowledge-intensive computational methods and answer other types of evaluation questions. Our case studies can be accessed at our GitHub repository (https://github.com/william-vw/MGCDS).
本研究具有双重目标。我们的第一个目标(1)是开发一种基于实践社区的知识密集型计算方法评估方法。我们的目标是对计算方法进行白盒分析,以深入了解其功能特点和内部工作原理。更详细地说,我们旨在回答以下评估问题:(i)计算方法在应用领域内的功能特点方面提供的支持;(ii)计算方法的底层计算过程、模型、数据和知识的深入描述。我们的第二个目标(2)涉及应用评估方法来回答关于知识密集型临床决策支持(CDS)方法的问题(i)和(ii),这些方法将临床知识实现为计算机可解释的指南(CIG);我们专注于基于多病种 CIG 的临床决策支持(MGCDS)方法,这些方法针对多病种治疗计划。
我们的方法直接涉及实践社区中的研究人员(a)确定应用领域内的功能特点;(b)定义涵盖这些特点的范例案例研究;(c)使用他们开发的计算方法解决案例研究——研究小组在解决方案报告中详细说明他们的解决方案和功能特点支持。接下来,研究作者(d)对解决方案报告进行定性分析,识别和描述计算方法之间的共同主题(或维度)。该方法非常适合进行白盒分析,因为它直接让各自的开发者参与研究计算方法的内部工作和功能特点支持。此外,既定的评估参数(例如,特点、案例研究、主题)构成了可重复使用的基准框架,可用于评估新开发的计算方法。我们将基于实践社区的评估方法应用于 MGCDS 方法。
六个研究小组提交了范例案例研究的全面解决方案报告。其中两个案例研究的解决方案被所有小组报告。我们确定了四个评估维度:不良相互作用的检测、管理策略表示、实现范例和人机交互支持。基于我们的白盒分析,我们为 MGCDS 方法提供了评估问题(i)和(ii)的答案。
所提出的评估方法包括启示式和比较方法的特点;重点是理解而不是判断/评分或识别当前方法中的差距。它涉及通过实践社区的直接参与来回答评估问题,这些社区参与设定评估参数和解决范例案例研究。我们的方法成功地应用于评估六个 MGCDS 知识密集型计算方法。我们确定,虽然评估方法提供了具有不同优缺点的多方面解决方案,但目前没有单一的 MGCDS 方法为 MGCDS 提供全面的解决方案。
我们认为,我们的评估方法,在这里应用于深入了解 MGCDS,可以用于评估其他类型的知识密集型计算方法并回答其他类型的评估问题。我们的案例研究可在我们的 GitHub 存储库(https://github.com/william-vw/MGCDS)中获得。