Suppr超能文献

病理性心脏生长和重塑的更新拉格朗日约束混合模型。

An updated Lagrangian constrained mixture model of pathological cardiac growth and remodelling.

机构信息

School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK.

School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK.

出版信息

Acta Biomater. 2023 Aug;166:375-399. doi: 10.1016/j.actbio.2023.05.022. Epub 2023 May 16.

Abstract

Progressive left ventricular (LV) growth and remodelling (G&R) is often induced by volume and pressure overload, characterized by structural and functional adaptation through myocyte hypertrophy and extracellular matrix remodelling, which are dynamically regulated by biomechanical factors, inflammation, neurohormonal pathways, etc. When prolonged, it can eventually lead to irreversible heart failure. In this study, we have developed a new framework for modelling pathological cardiac G&R based on constrained mixture theory using an updated reference configuration, which is triggered by altered biomechanical factors to restore biomechanical homeostasis. Eccentric and concentric growth, and their combination have been explored in a patient-specific human LV model under volume and pressure overload. Eccentric growth is triggered by overstretching of myofibres due to volume overload, i.e. mitral regurgitation, whilst concentric growth is driven by excessive contractile stress due to pressure overload, i.e. aortic stenosis. Different biological constituent's adaptations under pathological conditions are integrated together, which are the ground matrix, myofibres and collagen network. We have shown that this constrained mixture-motivated G&R model can capture different phenotypes of maladaptive LV G&R, such as chamber dilation and wall thinning under volume overload, wall thickening under pressure overload, and more complex patterns under both pressure and volume overload. We have further demonstrated how collagen G&R would affect LV structural and functional adaption by providing mechanistic insight on anti-fibrotic interventions. This updated Lagrangian constrained mixture based myocardial G&R model has the potential to understand the turnover processes of myocytes and collagen due to altered local mechanical stimuli in heart diseases, and in providing mechanistic links between biomechanical factors and biological adaption at both the organ and cellular levels. Once calibrated with patient data, it can be used for assessing heart failure risk and designing optimal treatment therapies. STATEMENT OF SIGNIFICANCE: Computational modelling of cardiac G&R has shown high promise to provide insight into heart disease management when mechanistic understandings are quantified between biomechanical factors and underlying cellular adaptation processes. The kinematic growth theory has been dominantly used to phenomenologically describe the biological G&R process but neglecting underlying cellular mechanisms. We have developed a constrained mixture based G&R model with updated reference by taking into account different mechanobiological processes in the ground matrix, myocytes and collagen fibres. This G&R model can serve as a basis for developing more advanced myocardial G&R models further informed by patient data to assess heart failure risk, predict disease progression, select the optimal treatment by hypothesis testing, and eventually towards a truly precision cardiology using in-silico models.

摘要

左心室(LV)的进行性生长和重塑(G&R)通常由容量和压力超负荷引起,其特征是通过心肌细胞肥大和细胞外基质重塑实现结构和功能的适应性,这些适应性是通过生物力学因素、炎症、神经激素途径等动态调节的。当这种适应性持续存在时,最终会导致不可逆的心力衰竭。在这项研究中,我们使用更新的参考构形,基于约束混合物理论为病理性心脏 G&R 建模开发了一个新框架,该框架由改变的生物力学因素触发,以恢复生物力学平衡。在容量和压力超负荷下的患者特异性人 LV 模型中,已经探索了偏心和同心生长及其组合。偏心生长是由容量超负荷引起的肌纤维过度拉伸引起的,例如二尖瓣反流,而同心生长是由压力超负荷引起的过度收缩力引起的,例如主动脉瓣狭窄。在病理条件下,不同的生物成分的适应性被整合在一起,包括基质、肌纤维和胶原网络。我们已经表明,这种受约束的混合物驱动的 G&R 模型可以捕获 LV G&R 的不同适应不良表型,例如容量超负荷下的腔室扩张和壁变薄、压力超负荷下的壁增厚以及在压力和容量超负荷下的更复杂模式。我们进一步证明了胶原 G&R 如何通过提供抗纤维化干预的机制见解来影响 LV 结构和功能的适应性。这种基于更新的拉格朗日约束混合物的心肌 G&R 模型有可能理解由于心脏病中局部机械刺激的改变而导致的心肌细胞和胶原的周转过程,并在器官和细胞水平上提供生物力学因素与生物适应性之间的机制联系。一旦与患者数据校准,它就可以用于评估心力衰竭风险和设计最佳治疗方案。 研究意义:心脏 G&R 的计算建模具有很高的潜力,可以提供对疾病管理的深入了解,当在生物力学因素和潜在的细胞适应过程之间量化机制理解时。运动学生长理论已被广泛用于从现象上描述生物 G&R 过程,但忽略了潜在的细胞机制。我们通过考虑基质、心肌细胞和胶原纤维中的不同生物力学过程,基于约束混合物开发了一个具有更新参考的 G&R 模型。这个 G&R 模型可以作为进一步开发基于患者数据的更先进心肌 G&R 模型的基础,以评估心力衰竭风险、预测疾病进展、通过假设检验选择最佳治疗方法,最终通过计算机模型实现真正的精准心脏病学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验