Institute for Computational Mechanics, Technical University of Munich, 85748, Garching, Germany.
Pediatric Cardiology, Stanford Maternal & Child Health Research Institute, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, USA.
Biomech Model Mechanobiol. 2023 Dec;22(6):1983-2002. doi: 10.1007/s10237-023-01747-w. Epub 2023 Jul 23.
Cardiac growth and remodeling (G&R) patterns change ventricular size, shape, and function both globally and locally. Biomechanical, neurohormonal, and genetic stimuli drive these patterns through changes in myocyte dimension and fibrosis. We propose a novel microstructure-motivated model that predicts organ-scale G&R in the heart based on the homogenized constrained mixture theory. Previous models, based on the kinematic growth theory, reproduced consequences of G&R in bulk myocardial tissue by prescribing the direction and extent of growth but neglected underlying cellular mechanisms. In our model, the direction and extent of G&R emerge naturally from intra- and extracellular turnover processes in myocardial tissue constituents and their preferred homeostatic stretch state. We additionally propose a method to obtain a mechanobiologically equilibrated reference configuration. We test our model on an idealized 3D left ventricular geometry and demonstrate that our model aims to maintain tensional homeostasis in hypertension conditions. In a stability map, we identify regions of stable and unstable G&R from an identical parameter set with varying systolic pressures and growth factors. Furthermore, we show the extent of G&R reversal after returning the systolic pressure to baseline following stage 1 and 2 hypertension. A realistic model of organ-scale cardiac G&R has the potential to identify patients at risk of heart failure, enable personalized cardiac therapies, and facilitate the optimal design of medical devices.
心脏生长和重塑 (G&R) 模式改变了心室的大小、形状和功能,无论是整体还是局部。生物力学、神经激素和遗传刺激通过心肌细胞尺寸和纤维化的变化来驱动这些模式。我们提出了一种新颖的基于微观结构的模型,该模型基于均匀化约束混合物理论预测心脏的器官尺度 G&R。以前的基于运动学生长理论的模型通过规定生长的方向和程度来再现大块心肌组织中 G&R 的后果,但忽略了潜在的细胞机制。在我们的模型中,G&R 的方向和程度自然从心肌组织成分的细胞内和细胞外转化过程以及它们的固有平衡拉伸状态中产生。我们还提出了一种获得力学平衡参考构象的方法。我们在理想化的 3D 左心室几何形状上测试了我们的模型,并证明我们的模型旨在在高血压情况下维持张力平衡。在稳定性图中,我们从具有不同收缩压和生长因子的相同参数集中确定了稳定和不稳定 G&R 的区域。此外,我们展示了在将收缩压恢复到基线后,在第 1 阶段和第 2 阶段高血压后 G&R 逆转的程度。器官尺度心脏 G&R 的现实模型有可能识别心力衰竭风险患者,实现个性化心脏治疗,并促进医疗器械的最佳设计。