Suppr超能文献

2016年至2020年中国猩红热发病率的空间聚集性分析

[Spatial clustering analysis of scarlet fever incidence in China from 2016 to 2020].

作者信息

Zhang J, Yang R, He S, Yuan P

机构信息

Department of Epidemiology and Health Statistics/West China Fourth Hospital and West China School of Public Health, Sichuan University, Chengdu 610041, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2023 Apr 20;43(4):644-648. doi: 10.12122/j.issn.1673-4254.2023.04.19.

Abstract

OBJECTIVE

To investigate the incidence trend and spatial clustering characteristics of scarlet fever in China from 2016 to 2020 to provide evidence for development of regional disease prevention and control strategies.

METHODS

The incidence data of scarlet fever in 31 provinces and municipalities in mainland China from 2016 to 2020 were obtained from the Chinese Health Statistics Yearbook and the Public Health Science Data Center led by the Chinese Center for Disease Control and Prevention.The three-dimensional spatial trend map of scarlet fever incidence in China was drawn using ArcGIS to determine the regional trend of scarlet fever incidence.GeoDa spatial autocorrelation analysis was used to explore the spatial aggregation of scarlet fever in China in recent years.

RESULTS

From 2016 to 2020, a total of 310 816 cases of scarlet fever were reported in 31 provinces, municipalities directly under the central government and autonomous regions, with an average annual incidence of 4.48/100 000.The reported incidence decreased from 4.32/100 000 in 2016 to 1.18/100 000 in 2020(=103.47, < 0.001).The incidence of scarlet fever in China showed an obvious regional clustering from 2016 to 2019(Moran's I>0, < 0.05), but was randomly distributed in 2020(Moran's I>0, =0.16).The incidence of scarlet fever showed a U-shaped distribution in eastern and western regions of China, and increased gradually from the southern to northern regions.Inner Mongolia Autonomous Region and Hebei and Gansu provinces had the High-high (H-H) clusters of scarlet fever in China.

CONCLUSION

Scarlet fever still has a high incidence in China with an obvious spatial clustering.For the northern regions of China with H-H clusters of scarlet fever, the allocation of health resources and public health education dynamics should be strengthened, and local scarlet fever prevention and control policies should be made to contain the hotspots of scarlet fever.

摘要

目的

探讨2016 - 2020年中国猩红热的发病趋势及空间聚集特征,为制定区域疾病防控策略提供依据。

方法

从《中国卫生统计年鉴》及中国疾病预防控制中心牵头的公共卫生科学数据中心获取2016 - 2020年中国大陆31个省、直辖市猩红热发病数据。运用ArcGIS绘制中国猩红热发病率的三维空间趋势图,确定猩红热发病率的区域趋势。采用GeoDa空间自相关分析,探讨近年来中国猩红热的空间聚集情况。

结果

2016 - 2020年,中国大陆31个省、直辖市及自治区共报告猩红热病例310816例,年均发病率为4.48/10万。报告发病率从2016年的4.32/10万降至2020年的1.18/10万(χ² = 103.47,P < 0.001)。2016 - 2019年中国猩红热发病率呈现明显的区域聚集性(Moran's I > 0,P < 0.05),但在2020年呈随机分布(Moran's I > 0,P = 0.16)。中国猩红热发病率在东部和西部地区呈U形分布,从南部到北部逐渐升高。内蒙古自治区以及河北和甘肃省存在中国猩红热的高高(H - H)聚集区。

结论

猩红热在中国仍具有较高发病率且存在明显的空间聚集性。对于存在猩红热高高聚集区的中国北方地区,应加强卫生资源配置和公共卫生教育力度,制定当地猩红热防控政策以遏制猩红热热点地区。

相似文献

1
[Spatial clustering analysis of scarlet fever incidence in China from 2016 to 2020].2016年至2020年中国猩红热发病率的空间聚集性分析
Nan Fang Yi Ke Da Xue Xue Bao. 2023 Apr 20;43(4):644-648. doi: 10.12122/j.issn.1673-4254.2023.04.19.
6
Epidemiological study of scarlet fever in Shenyang, China.中国沈阳猩红热的流行病学研究。
BMC Infect Dis. 2019 Dec 21;19(1):1074. doi: 10.1186/s12879-019-4705-9.
7
[Spatiotemporal distribution of measles in China, 2001-2016].[2001 - 2016年中国麻疹的时空分布]
Zhonghua Liu Xing Bing Xue Za Zhi. 2021 Apr 10;42(4):608-612. doi: 10.3760/cma.j.cn112338-20200317-00370.
8
[Temporal-spatial distribution of tuberculosis in China, 2004-2016].[2004 - 2016年中国结核病的时空分布]
Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Apr 10;41(4):526-531. doi: 10.3760/cma.j.cn112338-20190614-00441.
10
[Spatial distribution of Brucellosis in Gansu province, 2013-2018].[2013 - 2018年甘肃省布鲁氏菌病的空间分布]
Zhonghua Liu Xing Bing Xue Za Zhi. 2019 Sep 10;40(9):1099-1105. doi: 10.3760/cma.j.issn.0254-6450.2019.09.015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验