Suppr超能文献

长寿命高面容量钠离子金属负极构筑于 3D 打印亲钠骨架

Longevous Sodium Metal Anodes with High Areal Capacity Enabled by 3D-Printed Sodiophilic Monoliths.

机构信息

Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, P. R. China.

Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.

出版信息

ACS Nano. 2023 Jun 13;17(11):10844-10856. doi: 10.1021/acsnano.3c02506. Epub 2023 May 19.

Abstract

Sodium metal anode, featured by favorable redox voltage and material availability, offers a feasible avenue toward high-energy-density devices. However, uneven metal deposition and notorious dendrite proliferation synchronously hamper its broad application prospects. Here, a three-dimensional (3D) porous hierarchical silver/reduced graphene oxide (Ag/rGO) microlattice aerogel is devised as a sodiophilic monolith, which is realized by a direct ink writing 3D printing technology. The thus-printed Na@Ag/rGO electrode retains a durable cycling lifespan over 3100 h at 3.0 mA cm/1.0 mAh cm, concurrently harvesting a high average Coulombic efficiency of 99.80%. Impressively, it can be cycled for 340 h at a stringent condition of 6.0 mA cm with a large areal capacity of 60.0 mAh cm (∼1036.31 mAh g). Meanwhile, the well-regulated Na ion flux and uniform deposition kinetics are systematically probed by comprehensive electroanalytical analysis and theoretical simulations. As a result, assembled Na metal full battery delivers a long cycling sustainability over 500 cycles at 100 mA g with a low per-cycle decay of 0.85%. The proposed strategy might inspire the construction of high-capacity Na metal anodes with appealing stability.

摘要

钠金属阳极具有有利的氧化还原电压和材料可用性,为高能密度器件提供了可行的途径。然而,不均匀的金属沉积和臭名昭著的枝晶增殖同时阻碍了其广泛的应用前景。在这里,设计了一种三维(3D)多孔分层银/还原氧化石墨烯(Ag/rGO)微晶格气凝胶作为亲钠性单体,这是通过直接墨水书写 3D 打印技术实现的。所打印的 Na@Ag/rGO 电极在 3.0 mA cm/1.0 mAh cm 下可保持 3100 小时以上的持久循环寿命,同时获得 99.80%的高平均库仑效率。令人印象深刻的是,它可以在 6.0 mA cm 的严格条件下循环 340 小时,具有 60.0 mAh cm(∼1036.31 mAh g)的大面积容量。同时,通过综合电分析和理论模拟系统地研究了规则的 Na 离子通量和均匀的沉积动力学。结果,组装的 Na 金属全电池在 100 mA g 下循环 500 次以上,具有低的每循环衰减率 0.85%,具有较长的循环可持续性。所提出的策略可能会激发具有吸引力的稳定性的高容量 Na 金属阳极的构建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验