Suppr超能文献

用于超长循环钠金属电池的亲钠CoO@C/rGO纳米片的3D打印分级微网格框架

3D-Printed Hierarchically Microgrid Frameworks of Sodiophilic CoO@C/rGO Nanosheets for Ultralong Cyclic Sodium Metal Batteries.

作者信息

Bai Wanlong, Wang Hui, Min Dong Hyun, Miao Jingzhong, Li Beiming, Xu Tingting, Kong Dezhi, Li Xinjian, Yu Xu, Wang Ye, Park Ho Seok

机构信息

Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China.

School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066, Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea.

出版信息

Adv Sci (Weinh). 2024 Sep;11(35):e2404419. doi: 10.1002/advs.202404419. Epub 2024 Jul 17.

Abstract

Herein, hierarchically structured microgrid frameworks of CoO and carbon composite deposited on reduced graphene oxide (CoO@C/rGO) are demonstrated through the three-dimensioinal (3D) printing method, where the porous structure is controllable and the height and width are scalable, for dendrite-free Na metal deposition. The sodiophilicity, facile Na metal deposition kinetics, and NaF-rich solid electrolyte interphase (SEI) formation of cubic CoO phase are confirmed by combined spectroscopic and computational analyses. Moreover, the uniform and reversible Na plating/stripping process on 3D-printed CoO@C/rGO host is monitored in real time using in situ transmission electron and optical microscopies. In symmetric cells, the 3D printed CoO@C/rGO electrode achieves a long-term stability over 3950 at 1 mA cm and 1 mAh cm with a superior Coulombic efficiency (CE) of 99.87% as well as 120 h even at 20 mA cm and 20 mAh cm, far exceeding the previously reported carbon-based hosts for Na metal anodes. Consequently, the full cells of 3D-printed Na@CoO@C/rGO anode with 3D-printed NaV(PO)@C-rGO cathode (≈15.7 mg cm) deliver the high specific capacity of 97.97 mAh g after 500 cycles with a high CE of 99.89% at 0.5 C, demonstrating the real operation of flexible Na metal batteries.

摘要

在此,通过三维(3D)打印方法展示了沉积在还原氧化石墨烯(CoO@C/rGO)上的具有分层结构的CoO与碳复合材料的微电网框架,其多孔结构可控,高度和宽度可扩展,用于无枝晶钠金属沉积。通过光谱和计算分析相结合,证实了立方CoO相的亲钠性、容易的钠金属沉积动力学以及富含NaF的固体电解质界面(SEI)的形成。此外,使用原位透射电子显微镜和光学显微镜实时监测3D打印的CoO@C/rGO主体上均匀且可逆的钠电镀/剥离过程。在对称电池中,3D打印的CoO@C/rGO电极在1 mA cm和1 mAh cm下实现了超过3950次的长期稳定性,库仑效率(CE)高达99.87%,即使在20 mA cm和20 mAh cm下也能稳定运行120小时,远远超过了先前报道的用于钠金属阳极的碳基主体。因此,3D打印的Na@CoO@C/rGO阳极与3D打印的NaV(PO)@C-rGO阴极(≈15.7 mg cm)组成的全电池在0.5 C下经过500次循环后,具有97.97 mAh g的高比容量和99.89%的高CE,证明了柔性钠金属电池的实际运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff5c/11425270/d2979874e582/ADVS-11-2404419-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验