Suppr超能文献

SC-AIR-BERT:一种用于预测适应性免疫受体抗原结合特异性的预训练单细胞模型。

SC-AIR-BERT: a pre-trained single-cell model for predicting the antigen-binding specificity of the adaptive immune receptor.

机构信息

AI Lab, Tencent, Viseen Business Park, Gaoxin 9th South Road, 518057 Shenzhen, China.

School of Informatics, Xiamen University, South Siming Road 422, 361005 Xiamen, China.

出版信息

Brief Bioinform. 2023 Jul 20;24(4). doi: 10.1093/bib/bbad191.

Abstract

Accurately predicting the antigen-binding specificity of adaptive immune receptors (AIRs), such as T-cell receptors (TCRs) and B-cell receptors (BCRs), is essential for discovering new immune therapies. However, the diversity of AIR chain sequences limits the accuracy of current prediction methods. This study introduces SC-AIR-BERT, a pre-trained model that learns comprehensive sequence representations of paired AIR chains to improve binding specificity prediction. SC-AIR-BERT first learns the 'language' of AIR sequences through self-supervised pre-training on a large cohort of paired AIR chains from multiple single-cell resources. The model is then fine-tuned with a multilayer perceptron head for binding specificity prediction, employing the K-mer strategy to enhance sequence representation learning. Extensive experiments demonstrate the superior AUC performance of SC-AIR-BERT compared with current methods for TCR- and BCR-binding specificity prediction.

摘要

准确预测适应性免疫受体(AIRs),如 T 细胞受体(TCRs)和 B 细胞受体(BCRs)的抗原结合特异性,对于发现新的免疫疗法至关重要。然而,AIR 链序列的多样性限制了当前预测方法的准确性。本研究引入了 SC-AIR-BERT,这是一种预先训练的模型,它学习配对的 AIR 链的综合序列表示,以提高结合特异性预测的准确性。SC-AIR-BERT 首先通过在来自多个单细胞资源的大量配对的 AIR 链的大型队列上进行自我监督的预训练来学习 AIR 序列的“语言”。然后,该模型使用多层感知机头进行结合特异性预测,并采用 K-mer 策略来增强序列表示学习。广泛的实验表明,与 TCR 和 BCR 结合特异性预测的当前方法相比,SC-AIR-BERT 的 AUC 性能更优。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验