AI Lab, Tencent, Shenzhen, China.
Biomedicine Discovery Institute and Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia.
Sci Adv. 2023 Aug 9;9(32):eabo5128. doi: 10.1126/sciadv.abo5128.
Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs, omitting the structure features that are essential for binding affinity. In this study, we present a deep learning framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence and structure features of AIRs. DeepAIR achieves a Pearson's correlation of 0.813 in predicting the binding affinity of TCR, and a median area under the receiver-operating characteristic curve (AUC) of 0.904 and 0.942 in predicting the binding reactivity of TCR and BCR, respectively. Meanwhile, using TCR and BCR repertoire, DeepAIR correctly identifies every patient with nasopharyngeal carcinoma and inflammatory bowel disease in test data. Thus, DeepAIR improves the AIR-antigen binding prediction that facilitates the study of adaptive immunity.
适应性免疫受体(AIRs),包括 T 细胞受体(TCRs)和 B 细胞受体(BCRs),与其相应抗原之间的结构对接是适应性免疫的最基本过程之一。然而,目前预测 AIR-抗原结合的方法主要依赖于 AIRs 的序列衍生特征,忽略了对结合亲和力至关重要的结构特征。在这项研究中,我们提出了一个称为 DeepAIR 的深度学习框架,通过整合 AIRs 的序列和结构特征,实现了对 AIR-抗原结合的准确预测。DeepAIR 在预测 TCR 的结合亲和力方面的 Pearson 相关系数为 0.813,在预测 TCR 和 BCR 的结合反应性方面的中位数受试者工作特征曲线下面积(AUC)分别为 0.904 和 0.942。同时,使用 TCR 和 BCR 库,DeepAIR 可以正确识别测试数据中每个鼻咽癌和炎症性肠病患者。因此,DeepAIR 提高了 AIR-抗原结合预测的准确性,有助于适应性免疫的研究。