Suppr超能文献

DeepAIR:一个深度学习框架,用于有效地整合序列和 3D 结构,以实现适应性免疫受体分析。

DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis.

机构信息

AI Lab, Tencent, Shenzhen, China.

Biomedicine Discovery Institute and Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia.

出版信息

Sci Adv. 2023 Aug 9;9(32):eabo5128. doi: 10.1126/sciadv.abo5128.

Abstract

Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs, omitting the structure features that are essential for binding affinity. In this study, we present a deep learning framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence and structure features of AIRs. DeepAIR achieves a Pearson's correlation of 0.813 in predicting the binding affinity of TCR, and a median area under the receiver-operating characteristic curve (AUC) of 0.904 and 0.942 in predicting the binding reactivity of TCR and BCR, respectively. Meanwhile, using TCR and BCR repertoire, DeepAIR correctly identifies every patient with nasopharyngeal carcinoma and inflammatory bowel disease in test data. Thus, DeepAIR improves the AIR-antigen binding prediction that facilitates the study of adaptive immunity.

摘要

适应性免疫受体(AIRs),包括 T 细胞受体(TCRs)和 B 细胞受体(BCRs),与其相应抗原之间的结构对接是适应性免疫的最基本过程之一。然而,目前预测 AIR-抗原结合的方法主要依赖于 AIRs 的序列衍生特征,忽略了对结合亲和力至关重要的结构特征。在这项研究中,我们提出了一个称为 DeepAIR 的深度学习框架,通过整合 AIRs 的序列和结构特征,实现了对 AIR-抗原结合的准确预测。DeepAIR 在预测 TCR 的结合亲和力方面的 Pearson 相关系数为 0.813,在预测 TCR 和 BCR 的结合反应性方面的中位数受试者工作特征曲线下面积(AUC)分别为 0.904 和 0.942。同时,使用 TCR 和 BCR 库,DeepAIR 可以正确识别测试数据中每个鼻咽癌和炎症性肠病患者。因此,DeepAIR 提高了 AIR-抗原结合预测的准确性,有助于适应性免疫的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2047/10411891/7a08043eef5c/sciadv.abo5128-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验