Suppr超能文献

肌萎缩侧索硬化症基因敲入突变小鼠模型中胆固醇合成途径的上调及有限的神经退行性变

Up-regulation of cholesterol synthesis pathways and limited neurodegeneration in a knock-in mutant mouse model of ALS.

作者信息

Dominov Janice A, Madigan Laura A, Whitt Joshua P, Rademacher Katerina L, Webster Kristin M, Zhang Hesheng, Banno Haruhiko, Tang Siqi, Zhang Yifan, Wightman Nicholas, Shychuck Emma M, Page John, Weiss Alexandra, Kelly Karen, Kucukural Alper, Brodsky Michael H, Jaworski Alexander, Fallon Justin R, Lipscombe Diane, Brown Robert H

出版信息

bioRxiv. 2023 May 5:2023.05.05.539444. doi: 10.1101/2023.05.05.539444.

Abstract

UNLABELLED

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder affecting brain and spinal cord motor neurons. Mutations in the copper/zinc superoxide dismutase gene ( ) are associated with ∼20% of inherited and 1-2% of sporadic ALS cases. Much has been learned from mice expressing transgenic copies of mutant SOD1, which typically involve high-level transgene expression, thereby differing from ALS patients expressing one mutant gene copy. To generate a model that more closely represents patient gene expression, we created a knock-in point mutation (G85R, a human ALS-causing mutation) in the endogenous mouse gene, leading to mutant SOD1 protein expression. Heterozygous mutant mice resemble wild type, whereas homozygous mutants have reduced body weight and lifespan, a mild neurodegenerative phenotype, and express very low mutant SOD1 protein levels with no detectable SOD1 activity. Homozygous mutants exhibit partial neuromuscular junction denervation at 3-4 months of age. Spinal cord motor neuron transcriptome analyses of homozygous mice revealed up-regulation of cholesterol synthesis pathway genes compared to wild type. Transcriptome and phenotypic features of these mice are similar to knock-out mice, suggesting the phenotype is largely driven by loss of SOD1 function. By contrast, cholesterol synthesis genes are down-regulated in severely affected human transgenic mice at 4 months. Our analyses implicate dysregulation of cholesterol or related lipid pathway genes in ALS pathogenesis. The knock-in mouse is a useful ALS model to examine the importance of SOD1 activity in control of cholesterol homeostasis and motor neuron survival.

SIGNIFICANCE STATEMENT

Amyotrophic lateral sclerosis is a devastating disease involving the progressive loss of motor neurons and motor function for which there is currently no cure. Understanding biological mechanisms leading to motor neuron death is critical for developing new treatments. Using a new knock-in mutant mouse model carrying a mutation that causes ALS in patients, and in the mouse, causes a limited neurodegenerative phenotype similar to loss-of-function, we show that cholesterol synthesis pathway genes are up-regulated in mutant motor neurons, whereas the same genes are down-regulated in transgenic mice with a severe phenotype. Our data implicate dysregulation of cholesterol or other related lipid genes in ALS pathogenesis and provide new insights that could contribute to strategies for disease intervention.

摘要

未标记

肌萎缩侧索硬化症(ALS)是一种严重的神经退行性疾病,会影响大脑和脊髓的运动神经元。铜/锌超氧化物歧化酶基因( )的突变与约20%的遗传性ALS病例以及1%-2%的散发性ALS病例相关。从表达突变型SOD1转基因拷贝的小鼠身上已经了解到很多信息,这些小鼠通常涉及高水平的转基因表达,因此与表达一个突变基因拷贝的ALS患者不同。为了构建一个更接近患者基因表达的模型,我们在内源性小鼠 基因中创建了一个敲入点突变(G85R,一种导致人类ALS的突变),从而导致突变型SOD1 蛋白表达。杂合 突变小鼠与野生型相似,而纯合突变小鼠体重减轻、寿命缩短,具有轻度神经退行性表型,且突变型SOD1蛋白表达水平极低,没有可检测到的SOD1活性。纯合突变小鼠在3 - 4个月大时表现出部分神经肌肉接头去神经支配。与野生型相比,对纯合 小鼠的脊髓运动神经元进行转录组分析发现胆固醇合成途径基因上调。这些小鼠的转录组和表型特征与 敲除小鼠相似,表明 表型在很大程度上是由SOD1功能丧失驱动的。相比之下,在4个月大时,严重受影响的人类 转基因小鼠中胆固醇合成基因下调。我们的分析表明胆固醇或相关脂质途径基因的失调与ALS发病机制有关。 敲入小鼠是一种有用的ALS模型,可用于研究SOD1活性在控制胆固醇稳态和运动神经元存活中的重要性。

意义声明

肌萎缩侧索硬化症(ALS)是一种毁灭性疾病,涉及运动神经元和运动功能的逐渐丧失,目前尚无治愈方法。了解导致运动神经元死亡的生物学机制对于开发新的治疗方法至关重要。使用一种新的敲入突变小鼠模型,该模型携带一种在患者中导致ALS且在小鼠中导致类似于 功能丧失的有限神经退行性表型的突变,我们发现突变运动神经元中胆固醇合成途径基因上调,而在具有严重表型的转基因 小鼠中相同基因下调。我们的数据表明胆固醇或其他相关脂质基因的失调与ALS发病机制有关,并提供了新的见解,可能有助于疾病干预策略的制定。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验