Şahin Aslı, Held Aaron, Bredvik Kirsten, Major Paxton, Achilli Toni-Marie, Kerson Abigail G, Wharton Kristi, Stilwell Geoff, Reenan Robert
Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912.
Department of Biology, Rhode Island College, Providence, Rhode Island 02908.
Genetics. 2017 Feb;205(2):707-723. doi: 10.1534/genetics.116.190850. Epub 2016 Dec 14.
Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies.
肌萎缩侧索硬化症(ALS)是最常见的成人发病型运动神经元疾病,家族性形式可由铜锌超氧化物歧化酶1(SOD1)基因的众多显性突变引起。人们已投入大量精力研究SOD1-ALS转基因动物模型;然而,ALS突变型SOD1蛋白获得毒性的分子机制尚未完全明确。动物模型中的ALS样表型高度依赖转基因剂量。因此,这些模型的ALS样表型是源于突变等位基因的过表达还是SOD1突变本身的某些方面,这些问题并不容易厘清。为了解决疾病发病机制中突变型SOD1水平的问题,我们通过末端向外同源重组,将四种导致人类ALS的SOD1点突变(G37R、H48R、H71Y和G85R)基因工程改造到果蝇SOD1(dsod)的内源性位点,并分析了由此产生的分子、生化和行为表型。与先前的转基因模型相反,我们在没有突变蛋白过表达的情况下重现了ALS样表型。携带使SOD1蛋白酶活性失活的纯合突变(G85R、H48R和H71Y)的果蝇表现出神经退行性变、运动缺陷和寿命缩短。保留酶活性的突变(G37R)在表型上与对照无差异。虽然观察到的突变dsod表型是隐性的,但通过剂量研究以及与年龄匹配的dsod基因敲除动物的比较,发现了一个功能获得性成分,后者未表现出严重的运动缺陷或神经变性。我们得出结论,果蝇基因敲入模型捕捉到了基于人类SOD1的ALS的重要方面,并为进一步的遗传学研究提供了一个强大而有用的工具。