Command Suite, Naval Submarine Medical Research Laboratory, Groton, CT, 06349-5900, United States of America.
Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, CA, United States of America.
J Breath Res. 2023 Jun 12;17(3). doi: 10.1088/1752-7163/acd715.
Prolonged exposure to hyperbaric hyperoxia can lead to pulmonary oxygen toxicity (POtox). POtox is a mission limiting factor for special operations forces divers using closed-circuit rebreathing apparatus and a potential side effect for patients undergoing hyperbaric oxygen (HBO) treatment. In this study, we aim to determine if there is a specific breath profile of compounds in exhaled breath condensate (EBC) that is indicative of the early stages of pulmonary hyperoxic stress/POtox. Using a double-blind, randomized 'sham' controlled, cross-over design 14 U.S. Navy trained diver volunteers breathed two different gas mixtures at an ambient pressure of 2 ATA (33 fsw, 10 msw) for 6.5 h. One test gas consisted of 100% O(HBO) and the other was a gas mixture containing 30.6% Owith the balance N(Nitrox). The high Ostress dive (HBO) and low Ostress dive (Nitrox) were separated by at least seven days and were conducted dry and at rest inside a hyperbaric chamber. EBC samples were taken immediately before and after each dive and subsequently underwent a targeted and untargeted metabolomics analysis using liquid chromatography coupled to mass spectrometry (LC-MS). Following the HBO dive, 10 out of 14 subjects reported symptoms of the early stages of POtox and one subject terminated the dive early due to severe symptoms of POtox. No symptoms of POtox were reported following the nitrox dive. A partial least-squares discriminant analysis of the normalized (relative to pre-dive) untargeted data gave good classification abilities between the HBO and nitrox EBC with an AUC of 0.99 (±2%) and sensitivity and specificity of 0.93 (±10%) and 0.94 (±10%), respectively. The resulting classifications identified specific biomarkers that included human metabolites and lipids and their derivatives from different metabolic pathways that may explain metabolomic changes resulting from prolonged HBO exposure.
长时间暴露在高压高氧环境中可导致肺氧中毒(POtox)。POtox 是使用闭路呼吸装置的特种作战部队潜水员的任务限制因素,也是接受高压氧(HBO)治疗的患者的潜在副作用。在这项研究中,我们旨在确定呼气冷凝物(EBC)中是否存在特定的化合物呼吸特征,这些特征可表明肺高氧应激/POtox 的早期阶段。使用双盲、随机“假”对照、交叉设计,14 名美国海军训练有素的潜水员志愿者在 2ATA(33 英尺深,10 米深)的环境压力下呼吸两种不同的气体混合物,时间为 6.5 小时。一种测试气体由 100% O(HBO)组成,另一种气体混合物由 30.6% O 和其余的 N(氮氧混合气)组成。高氧应激潜水(HBO)和低氧应激潜水(氮氧混合气)之间至少间隔七天,在高压舱内干燥且休息时进行。EBC 样本在每次潜水前后立即采集,并随后使用液相色谱-质谱联用仪(LC-MS)进行靶向和非靶向代谢组学分析。在 HBO 潜水后,14 名受试者中有 10 名报告出现 POtox 早期症状,1 名受试者因 POtox 严重症状而提前终止潜水。在氮氧混合气潜水后,没有报告出现 POtox 症状。对非靶向数据进行归一化(相对于潜水前)后的偏最小二乘判别分析对 HBO 和氮氧混合气的 EBC 具有良好的分类能力,AUC 为 0.99(±2%),灵敏度和特异性分别为 0.93(±10%)和 0.94(±10%)。得出的分类结果确定了特定的生物标志物,包括来自不同代谢途径的人类代谢物和脂质及其衍生物,这些生物标志物可能解释了长时间 HBO 暴露导致的代谢组学变化。