Suppr超能文献

基于 AlphaFold2 的结构和位置信息的机器学习方法预测 ALS 中 TARDBP 和 FUS 基因突变致病性的准确性。

Accuracy of a machine learning method based on structural and locational information from AlphaFold2 for predicting the pathogenicity of TARDBP and FUS gene variants in ALS.

机构信息

Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan.

出版信息

BMC Bioinformatics. 2023 May 19;24(1):206. doi: 10.1186/s12859-023-05338-5.

Abstract

BACKGROUND

In the sporadic form of amyotrophic lateral sclerosis (ALS), the pathogenicity of rare variants in the causative genes characterizing the familial form remains largely unknown. To predict the pathogenicity of such variants, in silico analysis is commonly used. In some ALS causative genes, the pathogenic variants are concentrated in specific regions, and the resulting alterations in protein structure are thought to significantly affect pathogenicity. However, existing methods have not taken this issue into account. To address this, we have developed a technique termed MOVA (method for evaluating the pathogenicity of missense variants using AlphaFold2), which applies positional information for structural variants predicted by AlphaFold2. Here we examined the utility of MOVA for analysis of several causative genes of ALS.

METHODS

We analyzed variants of 12 ALS-related genes (TARDBP, FUS, SETX, TBK1, OPTN, SOD1, VCP, SQSTM1, ANG, UBQLN2, DCTN1, and CCNF) and classified them as pathogenic or neutral. For each gene, the features of the variants, consisting of their positions in the 3D structure predicted by AlphaFold2, pLDDT score, and BLOSUM62 were trained into a random forest and evaluated by the stratified fivefold cross validation method. We compared how accurately MOVA predicted mutant pathogenicity with other in silico prediction methods and evaluated the prediction accuracy at TARDBP and FUS hotspots. We also examined which of the MOVA features had the greatest impact on pathogenicity discrimination.

RESULTS

MOVA yielded useful results (AUC ≥ 0.70) for TARDBP, FUS, SOD1, VCP, and UBQLN2 of 12 ALS causative genes. In addition, when comparing the prediction accuracy with other in silico prediction methods, MOVA obtained the best results among those compared for TARDBP, VCP, UBQLN2, and CCNF. MOVA demonstrated superior predictive accuracy for the pathogenicity of mutations at hotspots of TARDBP and FUS. Moreover, higher accuracy was achieved by combining MOVA with REVEL or CADD. Among the features of MOVA, the x, y, and z coordinates performed the best and were highly correlated with MOVA.

CONCLUSIONS

MOVA is useful for predicting the virulence of rare variants in which they are concentrated at specific structural sites, and for use in combination with other prediction methods.

摘要

背景

在散发性肌萎缩侧索硬化症(ALS)中,导致家族性形式的致病基因中的罕见变异的致病性在很大程度上仍然未知。为了预测这些变异的致病性,通常使用计算机分析。在一些 ALS 致病基因中,致病变异集中在特定区域,并且认为由此导致的蛋白质结构改变会显著影响致病性。然而,现有的方法并未考虑到这一点。为了解决这个问题,我们开发了一种称为 MOVA(使用 AlphaFold2 评估错义变异致病性的方法)的技术,该技术应用了由 AlphaFold2 预测的结构变异的位置信息。在这里,我们检查了 MOVA 用于分析几种 ALS 致病基因的效用。

方法

我们分析了 12 个 ALS 相关基因(TARDBP、FUS、SETX、TBK1、OPTN、SOD1、VCP、SQSTM1、ANG、UBQLN2、DCTN1 和 CCNF)的变异,并将它们分类为致病性或中性。对于每个基因,由 AlphaFold2 预测的 3D 结构中的变异位置、pLDDT 评分和 BLOSUM62 组成的特征被训练到随机森林中,并通过分层五重交叉验证方法进行评估。我们比较了 MOVA 预测突变致病性的准确性与其他计算机预测方法,并评估了在 TARDBP 和 FUS 热点的预测准确性。我们还检查了 MOVA 特征中哪个对致病性区分的影响最大。

结果

对于 12 个 ALS 致病基因中的 TARDBP、FUS、SOD1、VCP 和 UBQLN2,MOVA 产生了有用的结果(AUC≥0.70)。此外,当将预测准确性与其他计算机预测方法进行比较时,与比较的方法相比,MOVA 在 TARDBP、VCP、UBQLN2 和 CCNF 中获得了最佳结果。MOVA 对 TARDBP 和 FUS 热点处突变的致病性具有更高的预测准确性。此外,通过将 MOVA 与 REVEL 或 CADD 结合使用,可以获得更高的准确性。在 MOVA 的特征中,x、y 和 z 坐标表现最好,并且与 MOVA 高度相关。

结论

MOVA 可用于预测在特定结构部位集中的罕见变异的毒力,并与其他预测方法结合使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6836/10197232/ddf4de664564/12859_2023_5338_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验