Yang Xueya, Fan Huiqing, Hu Fulong, Chen Shengmei, Yan Kang, Ma Longtao
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
Nanomicro Lett. 2023 May 20;15(1):126. doi: 10.1007/s40820-023-01093-7.
Rechargeable aqueous zinc iodine (ZnǀǀI) batteries have been promising energy storage technologies due to low-cost position and constitutional safety of zinc anode, iodine cathode and aqueous electrolytes. Whereas, on one hand, the low-fraction utilization of electrochemically inert host causes severe shuttle of soluble polyiodides, deficient iodine utilization and sluggish reaction kinetics. On the other hand, the usage of high mass polar electrocatalysts occupies mass and volume of electrode materials and sacrifices device-level energy density. Here, we propose a "confinement-catalysis" host composed of Fe single atom catalyst embedding inside ordered mesoporous carbon host, which can effectively confine and catalytically convert I/I couple and polyiodide intermediates. Consequently, the cathode enables the high capacity of 188.2 mAh g at 0.3 A g, excellent rate capability with a capacity of 139.6 mAh g delivered at high current density of 15 A g and ultra-long cyclic stability over 50,000 cycles with 80.5% initial capacity retained under high iodine loading of 76.72 wt%. Furthermore, the electrocatalytic host can also accelerate the [Formula: see text] conversion. The greatly improved electrochemical performance originates from the modulation of physicochemical confinement and the decrease of energy barrier for reversible I/I and I/I couples, and polyiodide intermediates conversions.
可充电水系锌碘(ZnǀǀI)电池由于锌负极、碘正极和水系电解质的低成本定位及本质安全性,一直是很有前景的储能技术。然而,一方面,电化学惰性主体的低利用率导致可溶性多碘化物严重穿梭、碘利用率不足以及反应动力学迟缓。另一方面,大量使用高质量的极性电催化剂占据了电极材料的质量和体积,牺牲了器件级能量密度。在此,我们提出一种由嵌入有序介孔碳主体内的铁单原子催化剂组成的“限域催化”主体,它能有效限域并催化转化I/I电对和多碘化物中间体。因此,该正极在0.3 A g时具有188.2 mAh g的高容量、在15 A g的高电流密度下具有139.6 mAh g的优异倍率性能以及超过50,000次循环的超长循环稳定性,在76.72 wt%的高碘负载下仍保留80.5%的初始容量。此外,电催化主体还能加速[公式:见原文]转化。电化学性能的大幅提升源于物理化学限域的调节以及可逆I/I和I/I电对及多碘化物中间体转化的能垒降低。