Li Fulong, Zhou Chuancong, Zhang Jie, Gao Yating, Nan Qing, Luo Junming, Xu Zhenming, Zhao Zejun, Rao Peng, Li Jing, Kang Zhenye, Shi Xiaodong, Tian Xinlong
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
Adv Mater. 2024 Sep;36(38):e2408213. doi: 10.1002/adma.202408213. Epub 2024 Jul 25.
Zinc dendrite, active iodine dissolution, and polyiodide shuttle caused by the strong interaction between liquid electrolyte and solid electrode are the chief culprits for the capacity attenuation of aqueous zinc-iodine batteries (ZIBs). Herein, mullite is adopted as raw material to prepare Zn-based solid-state electrolyte (Zn-ML) for ZIBs through zinc ion exchange strategy. Owing to the merits of low electronic conductivity, low zinc diffusion energy barrier, and strong polyiodide adsorption capability, Zn-ML electrolyte can effectively isolate the redox reactions of zinc anode and AC@I cathode, guide the reversible zinc deposition behavior, and inhibit the active iodine dissolution as well as polyiodide shuttle during cycling process. As expected, wide operating voltage window of 2.7 V (vs Zn/Zn), high Zn transference number of 0.51, and low activation energy barrier of 29.7 kJ mol can be achieved for the solid-state Zn//Zn cells. Meanwhile, high reversible capacity of 127.4 and 107.6 mAh g can be maintained at 0.5 and 1 A g after 3 000 and 2 100 cycles for the solid-state Zn//AC@I batteries, corresponding to high-capacity retention ratio of 85.2% and 80.7%, respectively. This study will inspire the development of mineral-derived solid electrolyte, and facilitate its application in Zn-based secondary batteries.
锌枝晶、活性碘溶解以及由液体电解质与固体电极之间的强相互作用引起的多碘化物穿梭效应是水系锌碘电池(ZIBs)容量衰减的主要原因。在此,采用莫来石作为原料,通过锌离子交换策略制备用于ZIBs的锌基固态电解质(Zn-ML)。由于具有低电子电导率、低锌扩散能垒和强多碘化物吸附能力等优点,Zn-ML电解质能够有效隔离锌负极和AC@I正极的氧化还原反应,引导可逆的锌沉积行为,并在循环过程中抑制活性碘溶解以及多碘化物穿梭效应。正如预期的那样,固态Zn//Zn电池可实现2.7 V(相对于Zn/Zn)的宽工作电压窗口、0.51的高锌迁移数以及29.7 kJ mol的低活化能垒。同时,固态Zn//AC@I电池在经过3000次和2100次循环后,在0.5和1 A g的电流密度下可分别保持127.4和107.6 mAh g的高可逆容量,对应的高容量保持率分别为85.2%和80.7%。本研究将推动矿物衍生固态电解质的发展,并促进其在锌基二次电池中的应用。