Liu Wenhui, Ma Hong, Zhao Lingli, Qian Weiwei, Liu Bo, Chen Jizhang, Yao Yagang
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
School of Mathematics and Physics, Key Laboratory of Energy Conversion Optoelectronic Functional Materials of Jiangxi Education Institutes, Jinggangshan University, Ji'an, 343009, People's Republic of China.
Nanomicro Lett. 2025 Sep 5;18(1):59. doi: 10.1007/s40820-025-01921-y.
Zn-I batteries have emerged as promising next-generation energy storage systems owing to their inherent safety, environmental compatibility, rapid reaction kinetics, and small voltage hysteresis. Nevertheless, two critical challenges, i.e., zinc dendrite growth and polyiodide shuttle effect, severely impede their commercial viability. To conquer these limitations, this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose, with its negative charge density further reinforced by anionic polyacrylamide incorporation. This modification simultaneously improves the separator's mechanical properties, ionic conductivity, and Zn ion transfer number. Remarkably, despite its ultrathin 20 μm profile, the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition, enabling Zn//Zn symmetric cells to achieve impressive cycle life (> 1800 h at 2 mA cm/2 mAh cm) while maintaining robust performance even at ultrahigh areal capacities (25 mAh cm). Additionally, the separator's anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion, yielding Zn-I batteries with outstanding rate capability (120.7 mAh g at 5 A g) and excellent cyclability (94.2% capacity retention after 10,000 cycles). And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration. This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.
锌碘电池因其固有的安全性、环境兼容性、快速的反应动力学和小的电压滞后性,已成为有前景的下一代储能系统。然而,两个关键挑战,即锌枝晶生长和多碘化物穿梭效应,严重阻碍了它们的商业可行性。为了克服这些限制,本研究开发了一种由秸秆衍生的羧化纳米纤维素制成的多功能隔膜,并通过引入阴离子聚丙烯酰胺进一步增强其负电荷密度。这种改性同时提高了隔膜的机械性能、离子电导率和锌离子转移数。值得注意的是,尽管其厚度仅为超薄的20μm,但这种设计的隔膜表现出优异的枝晶抑制和寄生反应抑制能力,使锌//锌对称电池能够实现令人印象深刻的循环寿命(在2 mA cm/2 mAh cm下>1800小时),同时即使在超高面积容量(25 mAh cm)下也能保持稳健的性能。此外,隔膜的阴离子特性通过静电排斥有效地阻止了多碘化物的迁移,从而产生了具有出色倍率性能(在5 A g下为120.7 mAh g)和优异循环稳定性(10000次循环后容量保持率为94.2%)的锌碘电池。并且在锌缺乏条件和软包电池配置下仍可实现优异的循环稳定性。这项工作通过合理的隔膜工程为设计高性能锌基储能系统建立了一种新范式。