Wang Yonglin, Cui Yangfeng, Zhao Meiqi, Wang Jiazhi, Liu Xueqin, Zhu Yunhai, Yang Yingkui
State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan, China.
Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore.
Nat Commun. 2025 Jul 1;16(1):5565. doi: 10.1038/s41467-025-60488-9.
Aqueous zinc-iodine (Zn||I) batteries, recognized for their cost-effectiveness, safety, and environmental sustainability, are emerging as the next-generation energy storage technologies. However, capacity degradation arising from the detrimental parasitic reactions at both the negative electrode and positive electrode interfaces presents substantial challenges for the practical implementations of Zn||I batteries. Herein, we develop zwitterion-mediated interface chemistry to modulate the interface reactions using the zwitterion of 1-butylsulfonate-3-methylimidazolium (BM) as an electrolyte additive. At the negative electrode, the alignment of electric field-oriented BM molecules creates a dynamic dual-asymmetry interface, facilitating homogeneous Zn deposition and protecting the Zn metal electrode from the water and corrosive polyiodides. At the positive electrode, the reconfigured solvation configuration of iodide ions, involved by BM molecules, deactivates the interface reaction associated with the I dissolution and polyiodide formation. Consequently, Zn||I batteries with BM additive demonstrate enhanced rate capability (135.5 mAh g at 20.0 A g) and extended durability (capacity retention of 91.9% after 50,000 cycles at 10.0 A g). The zwitterion-mediated interface chemistry effectively tackles the insurmountable challenges of aqueous Zn||I batteries, facilitating their reliable and practical implementation.
水系锌碘(Zn||I)电池因其成本效益、安全性和环境可持续性而受到认可,正成为下一代储能技术。然而,负极和正极界面处有害的寄生反应导致的容量衰减,给Zn||I电池的实际应用带来了重大挑战。在此,我们开发了两性离子介导的界面化学,使用1-丁基磺酸-3-甲基咪唑鎓(BM)的两性离子作为电解质添加剂来调节界面反应。在负极,电场取向的BM分子排列形成动态双不对称界面,促进锌的均匀沉积,并保护锌金属电极免受水和腐蚀性多碘化物的影响。在正极,BM分子参与的碘离子溶剂化构型的重新配置,使与碘溶解和多碘化物形成相关的界面反应失活。因此,添加BM添加剂的Zn||I电池表现出增强的倍率性能(在20.0 A g下为135.5 mAh g)和更长的耐久性(在10.0 A g下50,000次循环后容量保持率为91.9%)。两性离子介导的界面化学有效地解决了水系Zn||I电池面临的难以克服的挑战,促进了它们可靠且实际的应用。