Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany.
Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
Mol Cell. 2023 Jun 15;83(12):2077-2090.e12. doi: 10.1016/j.molcel.2023.04.026. Epub 2023 May 19.
Autophagy is a conserved intracellular degradation pathway that generates de novo double-membrane autophagosomes to target a wide range of material for lysosomal degradation. In multicellular organisms, autophagy initiation requires the timely assembly of a contact site between the ER and the nascent autophagosome. Here, we report the in vitro reconstitution of a full-length seven-subunit human autophagy initiation supercomplex built on a core complex of ATG13-101 and ATG9. Assembly of this core complex requires the rare ability of ATG13 and ATG101 to switch between distinct folds. The slow spontaneous metamorphic conversion is rate limiting for the self-assembly of the supercomplex. The interaction of the core complex with ATG2-WIPI4 enhances tethering of membrane vesicles and accelerates lipid transfer of ATG2 by both ATG9 and ATG13-101. Our work uncovers the molecular basis of the contact site and its assembly mechanisms imposed by the metamorphosis of ATG13-101 to regulate autophagosome biogenesis in space and time.
自噬是一种保守的细胞内降解途径,它生成新的双层自噬体,以将各种物质靶向到溶酶体进行降解。在多细胞生物中,自噬的起始需要内质网(ER)和新生自噬体之间的接触位点的及时组装。在这里,我们报告了全长七亚基人自噬起始超级复合物的体外重建,该复合物构建在 ATG13-101 和 ATG9 的核心复合物上。该核心复合物的组装需要 ATG13 和 ATG101 之间独特折叠之间的罕见转换能力。这种缓慢的自发变形转换是超级复合物自组装的限速步骤。核心复合物与 ATG2-WIPI4 的相互作用增强了膜泡的连接,并通过 ATG9 和 ATG13-101 加速了 ATG2 的脂质转移。我们的工作揭示了接触位点的分子基础及其组装机制,这些机制是由 ATG13-101 的变形强加的,以调节自噬体在空间和时间上的生物发生。