Suppr超能文献

基于腋窝淋巴结超声机器学习的非侵入性预测新辅助化疗治疗前阳性淋巴结乳腺癌的反应。

Noninvasive prediction of node-positive breast cancer response to presurgical neoadjuvant chemotherapy therapy based on machine learning of axillary lymph node ultrasound.

机构信息

Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

Department of Medical Record Management, The Affiliated Hospital of Qingdao University, Pingdu District, Qingdao, Shandong, China.

出版信息

J Transl Med. 2023 May 21;21(1):337. doi: 10.1186/s12967-023-04201-8.

Abstract

OBJECTIVES

To explore an optimal model to predict the response of patients with axillary lymph node (ALN) positive breast cancer to neoadjuvant chemotherapy (NAC) with machine learning using clinical and ultrasound-based radiomic features.

METHODS

In this study, 1014 patients with ALN-positive breast cancer confirmed by histological examination and received preoperative NAC in the Affiliated Hospital of Qingdao University (QUH) and Qingdao Municipal Hospital (QMH) were included. Finally, 444 participants from QUH were divided into the training cohort (n = 310) and validation cohort (n = 134) based on the date of ultrasound examination. 81 participants from QMH were used to evaluate the external generalizability of our prediction models. A total of 1032 radiomic features of each ALN ultrasound image were extracted and used to establish the prediction models. The clinical model, radiomics model, and radiomics nomogram with clinical factors (RNWCF) were built. The performance of the models was assessed with respect to discrimination and clinical usefulness.

RESULTS

Although the radiomics model did not show better predictive efficacy than the clinical model, the RNWCF showed favorable predictive efficacy in the training cohort (AUC, 0.855; 95% CI 0.817-0.893), the validation cohort (AUC, 0.882; 95% CI 0.834-0.928), and the external test cohort (AUC, 0.858; 95% CI 0.782-0.921) compared with the clinical factor model and radiomics model.

CONCLUSIONS

The RNWCF, a noninvasive, preoperative prediction tool that incorporates a combination of clinical and radiomics features, showed favorable predictive efficacy for the response of node-positive breast cancer to NAC. Therefore, the RNWCF could serve as a potential noninvasive approach to assist personalized treatment strategies, guide ALN management, avoiding unnecessary ALND.

摘要

目的

利用机器学习,通过临床和基于超声的放射组学特征,探索预测腋窝淋巴结(ALN)阳性乳腺癌患者对新辅助化疗(NAC)反应的最佳模型。

方法

本研究纳入了 1014 例经组织学检查证实为 ALN 阳性乳腺癌且接受术前 NAC 的患者,这些患者均来自青岛大学附属医院(QUH)和青岛市立医院(QMH)。最终,QUH 的 444 名参与者根据超声检查日期被分为训练队列(n=310)和验证队列(n=134)。QMH 的 81 名参与者用于评估我们预测模型的外部泛化能力。从每个 ALN 超声图像中提取了总共 1032 个放射组学特征,并用于建立预测模型。构建了临床模型、放射组学模型和包含临床因素的放射组学列线图(RNWCF)。使用判别和临床实用性评估模型的性能。

结果

虽然放射组学模型的预测效果并不优于临床模型,但在训练队列(AUC,0.855;95%CI 0.817-0.893)、验证队列(AUC,0.882;95%CI 0.834-0.928)和外部测试队列(AUC,0.858;95%CI 0.782-0.921)中,RNWCF 与临床因素模型和放射组学模型相比,均显示出较好的预测效果。

结论

RNWCF 是一种非侵入性的术前预测工具,它将临床和放射组学特征相结合,对阳性淋巴结乳腺癌对 NAC 的反应具有良好的预测效果。因此,RNWCF 可以作为一种潜在的非侵入性方法,以协助制定个性化治疗策略,指导 ALN 管理,避免不必要的 ALND。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb4/10201761/4248e298407c/12967_2023_4201_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验