Netaev Alexander, Schierbaum Nicolas, Seidl Karsten
Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstr. 61, 47057, Duisburg, Germany.
Department of Electronic Components and Circuits and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, 47057, Duisburg, Germany.
J Fluoresc. 2024 Jan;34(1):305-311. doi: 10.1007/s10895-023-03261-9. Epub 2023 May 22.
Here we present an artificial neural network (ANN)-approach to determine the fractional contributions P from fluorophores to a multi-exponential fluorescence decay in time-resolved lifetime measurements. Conventionally, P are determined by extracting two parameters (amplitude and lifetime) for each underlying mono-exponential decay using non-linear fitting. However, in this case parameter estimation is highly sensitive to initial guesses and weighting. In contrast, the ANN-based approach robustly gives the P without knowledge of amplitudes and lifetimes. By experimental measurements and Monte-Carlo simulations, we comprehensively show that accuracy and precision of P determination with ANNs and hence the number of distinguishable fluorophores depend on the fluorescence lifetimes' differences. For mixtures of up to five fluorophores, we determined the minimum uniform spacing Δτ between lifetimes to obtain fractional contributions with a standard deviation of 5%. In example, five lifetimes can be distinguished with a respective minimum uniform spacing of approx. 10 ns even when the fluorophores' emission spectra are overlapping. This study underlines the enormous potential of ANN-based analysis for multi-fluorophore applications in fluorescence lifetime measurements.
在此,我们提出一种人工神经网络(ANN)方法,用于在时间分辨寿命测量中确定荧光团对多指数荧光衰减的分数贡献P。传统上,通过使用非线性拟合为每个潜在的单指数衰减提取两个参数(幅度和寿命)来确定P。然而,在这种情况下,参数估计对初始猜测和加权高度敏感。相比之下,基于ANN的方法无需知道幅度和寿命就能稳健地给出P。通过实验测量和蒙特卡罗模拟,我们全面表明,使用ANN确定P的准确性和精度以及可区分荧光团的数量取决于荧光寿命的差异。对于多达五种荧光团的混合物,我们确定了寿命之间的最小均匀间距Δτ,以获得标准偏差为5%的分数贡献。例如,即使荧光团的发射光谱重叠,五个寿命也可以以各自约10 ns的最小均匀间距被区分。这项研究强调了基于ANN的分析在荧光寿命测量中的多荧光团应用方面的巨大潜力。