Sahoo Sumanta Kumar, Bolagam Ravi, Sardar Kripasindhu, Kaneko Satoru, Shi Shih-Chen, Chang Kao-Shuo, Yoshimura Masahiro
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Kanagawa Institute of Industrial Science and Technology, Ebina, Kanagawa 243-0435, Japan.
ACS Omega. 2023 May 4;8(19):17053-17063. doi: 10.1021/acsomega.3c01322. eCollection 2023 May 16.
Submerged plasma-assisted discharge direct patterning of diamond-like carbon (DLC) onto the silicon substrate in ambient conditions has succeeded as a new and novel soft solution process. In this environmentally benign technique, a copious amount of pure ethanol (ca. 4 mL) was locally activated with a maximum of ca. 0.23 mkWh by an as-electrochemically synthesized ultrasharp tungsten tip. With the assisted submerged plasma, the decomposed ethanol molecules are anodically patterned directly onto the silicon substrate in ambient conditions. The physical nature of DLC patterns was accessed by profilometry, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy analysis. Furthermore, Fourier-transform infrared, Raman, and X-ray photoelectron spectra were analyzed for chemical compositions and structures, such as surface functionalization, carbon-carbon bonding, and sp-sp ratio, respectively. From a Berkovich-configured nanoindentation analysis, Young's modulus and hardness have shown increasing trend with increasing sp-sp ratio in DLC patterns of 68.5 and 2.8 GPa, respectively. From the electrochemical cyclovoltammetry analysis, a maximum areal specific capacitance of 205.5 μF/cm has been achieved at a scan rate of 5 mV/s. The one-step, green, and environmentally sustainable approach of rapid formation of DLC patterns is thus a promising technique for various carbon-based electrode fabrication processes.
在环境条件下,通过浸没式等离子体辅助放电将类金刚石碳(DLC)直接图案化到硅衬底上已成功成为一种全新的软溶液工艺。在这种环境友好型技术中,通过电化学合成的超尖锐钨尖端,最多用约0.23 mkWh的能量对大量纯乙醇(约4 mL)进行局部激活。在辅助浸没式等离子体作用下,分解后的乙醇分子在环境条件下直接阳极图案化到硅衬底上。通过轮廓仪、原子力显微镜、扫描电子显微镜和透射电子显微镜分析来研究DLC图案的物理性质。此外,分别对傅里叶变换红外光谱、拉曼光谱和X射线光电子能谱进行分析,以确定其化学成分和结构,如表面功能化、碳 - 碳键合以及sp - sp比。通过Berkovich配置的纳米压痕分析,在DLC图案中,杨氏模量和硬度分别随着sp - sp比的增加而呈现上升趋势,分别为68.5 GPa和2.8 GPa。从电化学循环伏安分析可知,在扫描速率为5 mV/s时,最大面积比电容达到205.5 μF/cm²。因此,这种一步法、绿色且环境可持续的快速形成DLC图案的方法,对于各种基于碳的电极制造工艺来说是一种很有前景的技术。